Fibre Channel Coaxial Cable Driver and Loop Resiliency Circuit

Description

The MC10SX1189 is a differential receiver, differential transmitter specifically designed to drive coaxial cables. It incorporates the output cable drive capability of the MC10EL89 Coaxial Cable Driver with additional circuitry to multiplex the output cable drive source between the cable receiver or the local transmitter inputs. The multiplexer control circuitry is TTL compatible for ease of operation.

The MC10SX1189 is useful as a bypass element for Fibre Channel-Arbitrated Loop (FC-AL) or Serial Storage Architecture (SSA) applications, to create loop style interconnects with fault tolerant, active switches at each device node. This device is particularly useful for back panel applications where small size is desirable.

The EL89 style drive circuitry produces swings twice as large as a standard PECL output. When driving a coaxial cable, proper termination is required at both ends of the line to minimize reflections. The 1.6 V output swings allow for proper termination at both ends of the cable, while maintaining the required swing at the receiving end of the cable. Because of the larger output swings, the QT, $\overline{\rm QT}$ outputs are terminated into the thevenin equivalent of 50 Ω to V_{CC} – 3.0 V instead of 50 Ω to V_{CC} – 2.0 V.

Features

- 425 ps Propagation Delay
- 1.6 V Output Swing on the Cable Driving Output
- Operation Range:
 - $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$
- 75 kΩ Internal Input Pull Down Resistors
- >1000 V ESD Protection
- Transistor Count = 102
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

FIBRE CHANNEL COAXIAL CABLE DRIVER AND LOOP RESILIENCY CIRCUIT

SOIC-16 CASE 751B-05

MARKING DIAGRAM*

10SX1189 = Specific Device Code A = Assembly Location

WL = Wafer Lot
 Y = Year
 WW = Work Week
 G = Pb-Free Package

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note <u>AND8002/D</u>.

ORDERING INFORMATION

Device	Package	Shipping
MC10SX1189DG	SOIC-16 (Pb-Free)	48 Units/Tube

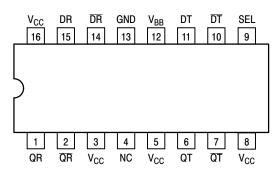


Figure 1. Pinout: SOIC-16 (Top View)

TRUTH TABLE

SEL	Function
L H	$\begin{array}{c} DR \to QT \\ DT \to QT \end{array}$

PIN NAMES

Pins	Function
DR/DR	Differential Input from Receive Cable
QR/QR	Buffered Differential Output from Receive Cable
DT/DT	Differential Input to Transmit Cable
QT/QT	Buffered Differential Output to
	Transmit Cable
SEL	Multiplexer Control Signal (TTL)
V_{CC}	Positive Power Supply
GND	Ground
V_{BB}	Reference Voltage Output

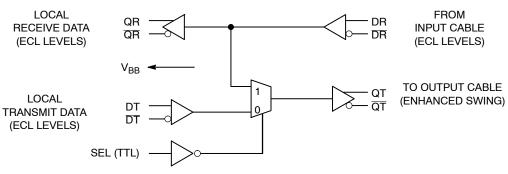


Figure 2. LOGIC DIAGRAM

Table 1. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Power Supply Voltage (Referenced to GND)	0 to +7.0	Vdc
V _{IN}	Input Voltage (Referenced to GND)	0 to +6.0	Vdc
l _{OUT}	Output Current Continuous Surge	50 100	mA
T _A	Operating Temperature Range	-40 to +85	°C
T _{STG}	Storage Temperature Range	-50 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

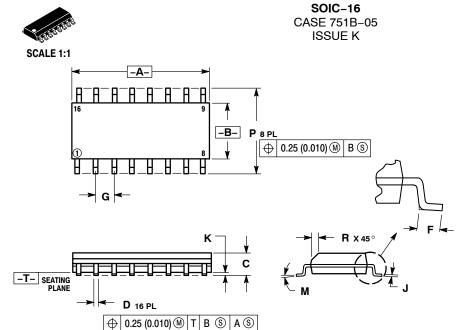
Table 2. DC CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}, V_{EE} = 0 \text{ V}$)

			-40°C)°C 25°C							
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{OH}	Output Voltage High (QR, QR) V _{CC} = 5.0 V, GND = 0 V (Notes 1, 2)	3.92	4.05	4.22	3.97	4.11	4.27	4.00	4.16	4.30	V
V _{OL}	Output Voltage Low (QR, QR) V _{CC} = 5.0 V, GND = 0 V (Notes 1, 2)	3.05	3.23	3.35	3.07	3.24	3.37	3.10	3.25	3.41	V
V _{OH}	Output Voltage High (QT,QT) V _{CC} = 5.0 V, GND = 0 V (Notes 1, 3)	3.83	3.95	4.10	3.88	4.02	4.15	3.90	4.09	4.17	V
V _{OL}	Output Voltage Low (QT,QT) V _{CC} = 5.0 V, GND = 0 V (Notes 1, 3)	1.90	2.33	2.50	1.85	2.26	2.45	1.85	2.23	2.45	٧
I _{CC}	Quiescent Supply Current (Note 4)	20	25	42	23	27	47	25	28	47	mA
V _{IH}	Input Voltage High (DR, DR & DT, DT) V _{CC} = 5.0 V, GND = 0 V (Note 1)	3.77		4.11	3.87		4.19	3.94		4.28	V
V _{IL}	Input Voltage Low (DR, DR & DT, DT) V _{CC} = 5.0 V, GND = 0 V (Note 1)	3.05		3.50	3.05		3.52	3.05		3.56	٧
V _{IH}	Input Voltage High SEL	2.0			2.0			2.0			V
V_{IL}	Input Voltage Low SEL			0.8			0.8			0.8	V
V _{BB}	Output Reference Voltage V _{CC} = 5.0 V, GND = 0 V (Note 1)	3.57	3.63	3.70	3.65	3.70	3.75	3.69	3.75	3.81	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	0.5			0.5			0.5			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Values will track 1:1 with the V_{CC} supply. V_{EE} can vary +0.5 V to -0.5 V. 2. Outputs loaded with 50 Ω to V_{CC} 2.0 V. 3. Outputs loaded with 50 Ω to V_{CC} 3.0 V. 4. Outputs open circuited.

Table 3. AC CHARACTERISTICS (V_{CC} = 4.5 V to 5.5 V) (Note 1)


			-40°C 0 to 85°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Unit	Condition
t _{PLH} , t _{PHL}	Propagation Delay to Output $DR \rightarrow QR$ (Diff) (SE) $DR \rightarrow QT$ (Diff) (SE) $DT \rightarrow QT$ (Diff) (SE)	175 150 250 225 225 200	300 300 425 425 400 400	450 500 650 700 650 725	225 175 300 250 275 225	325 325 450 450 425 425	500 550 650 700 650 725	ps	Note 2 Note 3
	Propagation Delay SEL → QT,QT	450	600	850	500	650	800		1.5V to 50% Pt
t _r , t _f	Rise TimeQR,QR Fall Time	100 100	275 275	400 400	125 125	275 275	400 400	ps	20% to 80% 80% to 20%
t _r , t _f	Rise TimeQT,QT Fall Time	150 150	300 300	550 550	150 150	300 300	550 550	ps	20% to 80% 80% to 20%
t _{skew}	Within Device Skew		15			15		ps	Note 4
V_{PP}	Minimum Input Swing	200		1000	200		1000	mV	Note 5
V _{CMR}	Common Mode Range	3.00		4.35	3.00		4.35	V	Note 6

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. V_{EE} can vary +0.5 V to -0.5 V.
- The differential propagation delay is defined as the delay from the crossing points of the differential input signals to the crossing point of the differential output signals.
- 3. The single-ended propagation delay is defined as the delay from the 50% point of the input signal to the 50% point of the output signal.
- 4. Duty cycle skew is the difference between t_{PLH} and t_{PHL} propagation delay through a device.
- 5. Minimum input swing for which AC parameters are guaranteed.
- The CMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP Min} and 1.0 V.

ECLinPS is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

MECHANICAL CASE OUTLINE

DATE 29 DEC 2006

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- THE NOTION AND TOLETANOING FER ANSI'Y 14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- PHOI HUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION

 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D

 DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
C	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
7	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:			
PIN 1.		PIN 1.		PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE	#1	
2.			ANODE	2.	BASE, #1	2.	COLLECTOR, #1		
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER, #1	3.	COLLECTOR, #2		
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2		
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3		
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3		
7.	COLLECTOR	7.	ANODE	7.	EMITTER, #2	7.	COLLECTOR, #4		
8.	COLLECTOR			8.	COLLECTOR, #2	8.	COLLECTOR, #4		
9.	BASE		CATHODE	9.	COLLECTOR, #3	9.	BASE, #4		
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4		
11.	NO CONNECTION	11.		11.	EMITTER, #3	11.	BASE, #3		
12.	EMITTER		CATHODE	12.		12.			
13.	BASE		CATHODE	13.	COLLECTOR, #4	13.	BASE, #2	SOI DEDING	FOOTPRINT
14.			NO CONNECTION	14.	BASE, #4	14.	EMITTER, #2	SOLDERING	FOOTFRINT
15.	EMITTER		ANODE	15.	EMITTER, #4	15.	BASE, #1	8	ЗX
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1	- 6	.40 ────
								-	-
STYLE 5:		STYLE 6:		STYLE 7:					16X 1.12 <
PIN 1.	DRAIN, DYE #1		CATHODE	PIN 1.	SOURCE N-CH				,
2.	DRAIN. #1		CATHODE	2.	COMMON DRAIN (OUTPUT)		. 🗀 1	16
3.	DRAIN, #2		CATHODE	3.	COMMON DRAIN (OUTPUT			,	''
4.	DRAIN, #2	4.	CATHODE	4.	GATE P-CH	,			
5.	DRAIN, #3	5.	CATHODE	5.	COMMON DRAIN (OUTPUT)	16	5X T	
6.	DRAIN, #3	6.	CATHODE	6.	COMMON DRAIN (OUTPUT		0.5		' <u> </u>
7.	DRAIN, #4	7.	CATHODE	7.	COMMON DRAIN (OUTPUT		0.0		
8.	DRAIN, #4	8.	CATHODE	8.	SOURCE P-CH	,			
9.	GATE, #4	9.	ANODE	9.	SOURCE P-CH				
10.	SOURCE, #4	10.	ANODE	10.	COMMON DRAIN (OUTPUT)			
11.	GATE, #3	11.	ANODE	11.	COMMON DRAIN (OUTPUT				
12.	SOURCE, #3	12.	ANODE	12.	COMMON DRAIN (OUTPUT				
13.	GATE, #2	13.	ANODE	13.	GATE N-CH	,			¦
14.	SOURCE, #2	14.	ANODE	14.	COMMON DRAIN (OUTPUT)			↓ PITCH
15.	GATE, #1	15.	ANODE	15.	COMMON DRAIN (OUTPUT				<u>+-+</u>
16.	SOURCE, #1	16.	ANODE	16.	SOURCE N-CH	,			
	•							□ ₈	9 + - + -
								•	,
									BINENIOLONIO MILLINETTE
									DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOIC-16		PAGE 1 OF 1			

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.