Analog Multiplexers/ Demultiplexers with Injection Current Effect Control

Automotive Customized

These devices are pin compatible to standard HC405x and MC1405xB analog mux/demux devices, but feature injection current effect control. This makes them especially suited for usage in automotive applications where voltages in excess of normal logic voltage are common.

The injection current effect control allows signals at disabled analog input channels to exceed the supply voltage range without affecting the signal of the enabled analog channel. This eliminates the need for external diode/resistor networks typically used to keep the analog channel signals within the supply voltage range.

The devices utilize low power silicon gate CMOS technology. The Channel Select and Enable inputs are compatible with standard CMOS outputs.

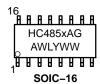
Features

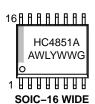
- Injection Current Cross–Coupling Less than 1 mV/mA (See Figure 10)
- Pin Compatible to HC405X and MC1405XB Devices
- Power Supply Range $(V_{CC} GND) = 2.0 \text{ to } 6.0 \text{ V}$
- In Compliance With the Requirements of JEDEC Standard No. 7 A
- Chip Complexity: 154 FETs or 36 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

SOIC-16 D SUFFIX CASE 751B







TSSOP-16 DT SUFFIX CASE 948F QFN16 MN SUFFIX CASE 485AW

MARKING DIAGRAMS

QFN16*
*V4851 marking used for NLV74HC4851AMN1TWG

x = 1 or 2

A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or ■ = Pb–Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet.

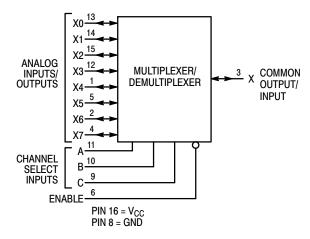


Figure 1. MC74HC4851A Logic Diagram Single-Pole, 8-Position Plus Common Off

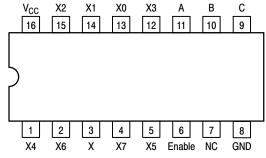


Figure 2. MC74HC4851A 16-Lead Pinout (Top View)

FUNCTION TABLE - MC74HC4851A

Contr	ol Inp			
	;	Selec	t	
Enable	С	В	Α	ON Channels
L	L	L	L	X0
L	L	L	Н	X1
L	L	Н	L	X2
L	L	Н	Н	X3
L	Н	L	L	X4
L	Н	L	Н	X5
L	Н	Н	L	X6
L	Н	Н	Н	X7
Н	X	Χ	Χ	NONE

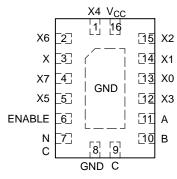


Figure 3. MC74HC4851A QFN Pinout

FUNCTION TABLE - MC74HC4852A

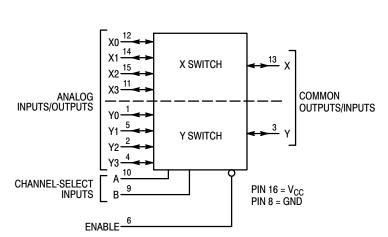
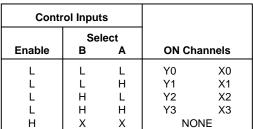



Figure 4. MC74HC4852A Logic Diagram Double-Pole, 4-Position Plus Common Off

X = Don't Care

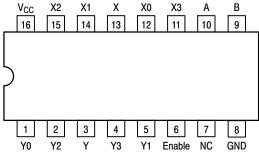


Figure 5. MC74HC4852A 16-Lead Pinout (Top View)

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Positive DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage (Any Pin) (Referenced to GND)	-0.5 to $V_{CC} + 0.5$	V
I	DC Current, Into or Out of Any Pin	±25	mA
P _D	Power Dissipation in Still Air, SOIC Package† TSSOP Package†	500 450	mW
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds SOIC or TSSOP Package	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating: SOIC Package: -7 mW/°C from 65° to 125°C TSSOP Package: -6.1 mW/°C from 65° to 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V _{CC}	Positive DC Supply Voltage	(Referenced to GND)	2.0	6.0	V
V _{in}	DC Input Voltage (Any Pin)	(Referenced to GND)	GND	V _{CC}	V
V _{IO} *	Static or Dynamic Voltage Across Switch		0.0	1.2	V
T _A	Operating Temperature Range, All Package Types		- 55	+125	°C
t _r , t _f	Input Rise/Fall Time (Channel Select or Enable Inputs)	$V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$	0 0 0	1000 500 400	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC CHARACTERISTICS — Digital Section (Voltages Referenced to GND) V_{EE} = GND, Except Where Noted

			v _{cc}	Guara	nteed Lin	nit	
Symbol	Parameter	Condition	V	-55 to 25°C	≤85°C	≤125°C	Unit
V _{IH}	Minimum High–Level Input Voltage, Channel–Select or Enable Inputs	R _{on} = Per Spec	2.0 3.0 4.5 6.0	1.50 2.10 3.15 4.20	1.50 2.10 3.15 4.20	1.50 2.10 3.15 4.20	V
V _{IL}	Maximum Low–Level Input Voltage, Channel–Select or Enable Inputs	R _{on} = Per Spec	2.0 3.0 4.5 6.0	0.50 0.90 1.35 1.80	0.50 0.90 1.35 1.80	0.50 0.90 1.35 1.80	V
l _{in}	Maximum Input Leakage Current on Digital Pins (Enable/A/B/C)	V _{in} = V _{CC} or GND	6.0	±0.1	±1.0	±1.0	μΑ
Icc	Maximum Quiescent Supply Current (per Package)	$V_{in(digital)} = V_{CC}$ or GND $V_{in(analog)} = GND$	6.0	2	20	40	μΑ

^{*}For voltage drops across switch greater than 1.2 V (switch on), excessive V_{CC} current may be drawn; i.e., the current out of the switch may contain both V_{CC} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.

DC CHARACTERISTICS — Analog Section

				Guara	nteed Lim	nit	
Symbol	Parameter	Condition	v _{cc}	-55 to 25°C	≤85°C	≤125°C	Unit
R _{on}	Maximum "ON" Resistance	$V_{\text{in}} = V_{\text{IL}} \text{ or } V_{\text{IH}}; V_{\text{IS}} = V_{\text{CC}} \text{ to}$ GND (Note 1); $I_{\text{S}} \le 2.0 \text{ mA}$ (Note 2)	2.0 3.0 4.5 6.0	1700 1100 550 400	1750 1200 650 500	1800 1300 750 600	Ω
ΔR_{on}	Delta "ON" Resistance	$V_{\text{in}} = V_{\text{IL}} \text{ or } V_{\text{IH}}; V_{\text{IS}} = V_{\text{CC}}/2$ (Note 1); $I_{\text{S}} \le 2.0 \text{ mA}$ (Note 2)	2.0 3.0 4.5 6.0	300 160 80 60	400 200 100 80	500 240 120 100	Ω
l _{off}	Maximum Off-Channel Leakage Current, Any One Channel Common Channel	V _{in} = V _{CC} or GND	6.0	±0.1 ±0.1	±0.1 ±0.1	±0.1 ±0.1	μΑ
I _{on}	Maximum On-Channel Leakage Channel-to-Channel	V _{in} = V _{CC} or GND	6.0	±0.1	±0.1	±0.1	μΑ

AC CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

Symbol	Parameter	V _{CC}	-55 to 25°C	≤85°C	≤125°C	Unit
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Analog Input to Analog Output	2.0 3.0 4.5 6.0	160 80 40 30	180 90 45 35	200 100 50 40	ns
t _{PHL} , t _{PHZ,PZH} t _{PLH} , t _{PLZ,PZL}	Maximum Propagation Delay, Enable or Channel-Select to Analog Output	2.0 3.0 4.5 6.0	260 160 80 78	280 180 90 80	300 200 100 80	ns
C _{in}	Maximum Input Capacitance Digital Pins (All Switches Off) Any Single Analog Pin (All Switches Off) Common Analog Pin		10 35 40	10 35 40	10 35 40	pF
C _{PD}	Power Dissipation Capacitance Typical	5.0	20			pF

INJECTION CURRENT COUPLING SPECIFICATIONS (V $_{CC}$ = 5V, T_A = -55°C to +125°C)

Symbol	Parameter	Condition	Тур	Max	Unit
VΔ _{out}		$\begin{split} & I_{in}{}^{*} \leq 1 \text{ mA, } R_{S} \leq 3,9 \text{ k}\Omega \\ & I_{in}{}^{*} \leq 10 \text{ mA, } R_{S} \leq 3,9 \text{ k}\Omega \\ & I_{in}{}^{*} \leq 1 \text{ mA, } R_{S} \leq 20 \text{ k}\Omega \\ & I_{in}{}^{*} \leq 10 \text{ mA, } R_{S} \leq 20 \text{ k}\Omega \end{split}$	0.1 1.0 0.5 5.0	1.0 5.0 2.0 20	mV

^{*} I_{in} = Total current injected into all disabled channels.

V_{IS} is the input voltage of an analog I/O pin.
 I_S is the currebnt flowing in or out of analog I/O pin.

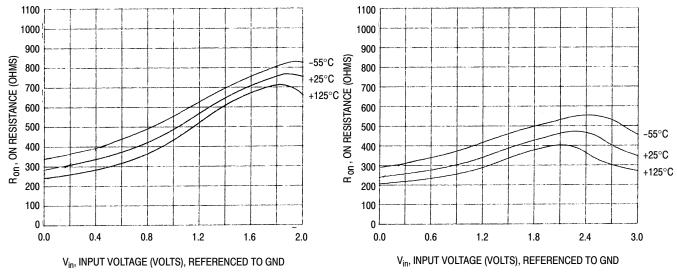


Figure 6. Typical On Resistance V_{CC} = 2V

Figure 7. Typical On Resistance $V_{CC} = 3V$

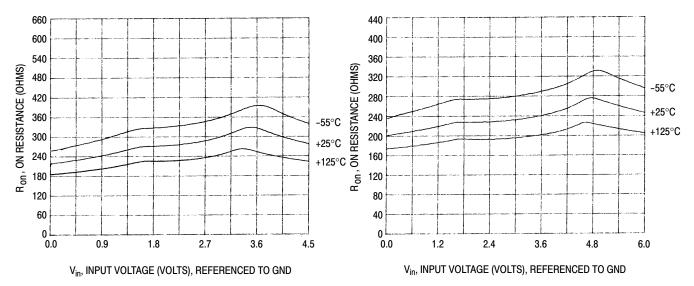


Figure 8. Typical On Resistance $V_{CC} = 4.5V$

Figure 9. Typical On Resistance $V_{CC} = 6V$

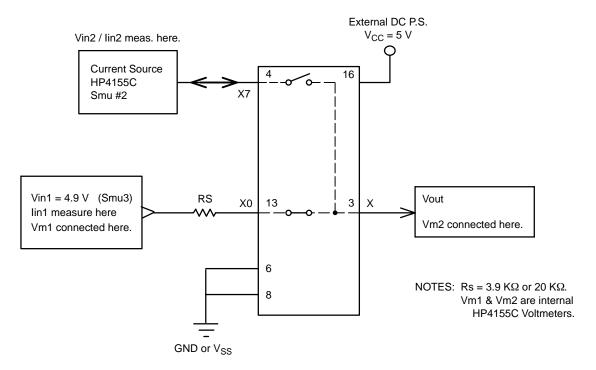


Figure 10. Injection Current Coupling Specification

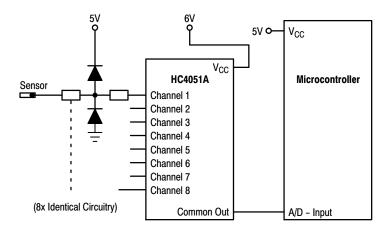


Figure 11. Actual Technology

Requires 32 passive components and one extra 6V regulator to suppress injection current into a standard HC4051 multiplexer

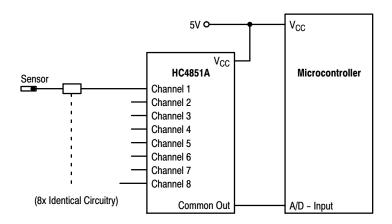


Figure 12. MC74HC4851A Solution Solution by applying the HC4851A multiplexer

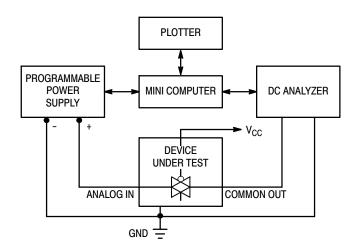


Figure 13. On Resistance Test Set-Up

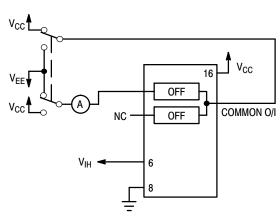


Figure 14. Maximum Off Channel Leakage Current, Any One Channel, Test Set-Up

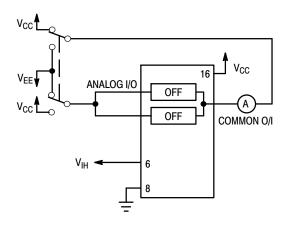


Figure 15. Maximum Off Channel Leakage Current, Common Channel, Test Set-Up

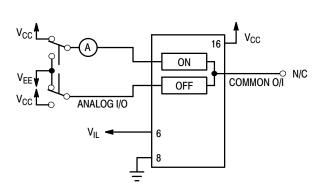


Figure 16. Maximum On Channel Leakage Current, Channel to Channel, Test Set-Up

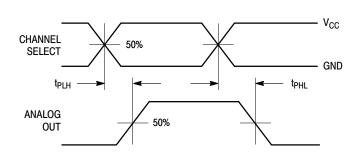
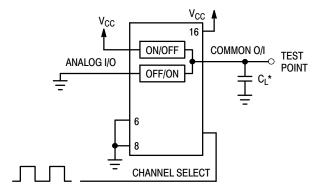
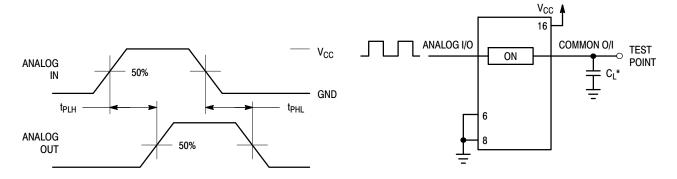




Figure 17. Propagation Delays, Channel Select to Analog Out

*Includes all probe and jig capacitance

Figure 18. Propagation Delay, Test Set-Up Channel Select to Analog Out

*Includes all probe and jig capacitance

Figure 19. Propagation Delays, Analog In to Analog Out

Figure 20. Propagation Delay, Test Set-Up
Analog In to Analog Out

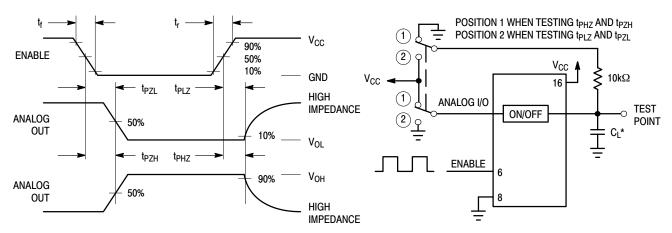


Figure 21. Propagation Delays, Enable to Analog Out

Figure 22. Propagation Delay, Test Set-Up Enable to Analog Out

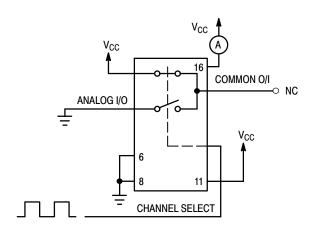


Figure 23. Power Dissipation Capacitance, Test Set-Up

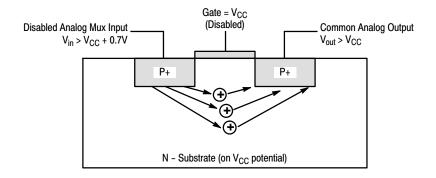


Figure 24. Diagram of Bipolar Coupling Mechanism

Appears if V_{in} exceeds V_{CC} , driving injection current into the substrate

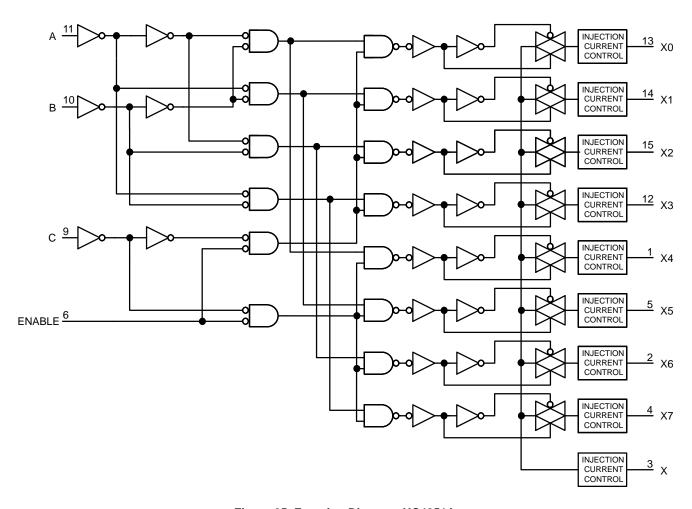


Figure 25. Function Diagram, HC4851A

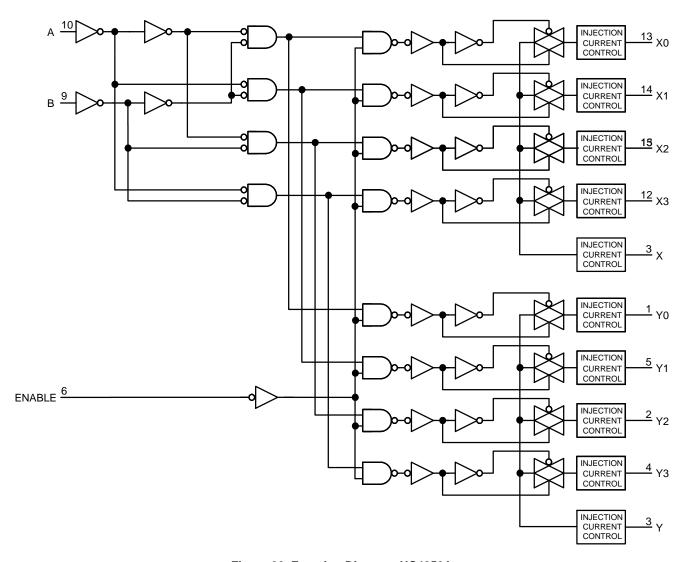
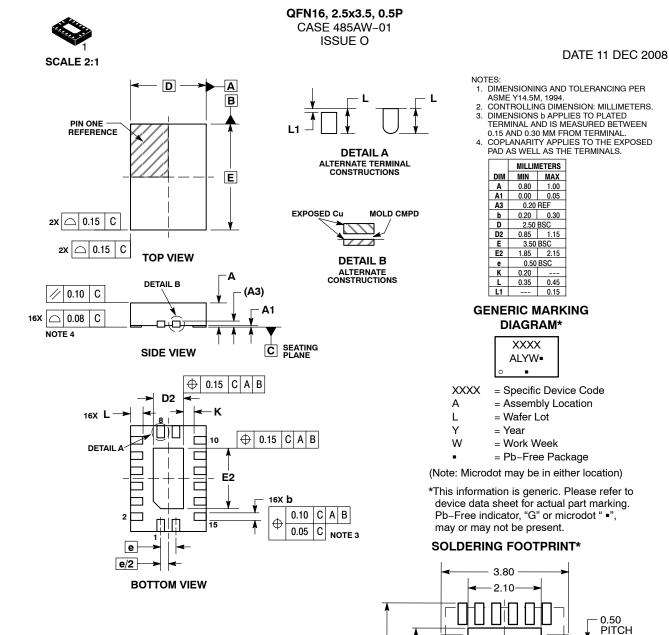


Figure 26. Function Diagram, HC4852A

ORDERING INFORMATION


Device	Package	Shipping [†]
MC74HC4851ADG		48 Units / Rail
MC74HC4851ADR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
NLVHC4851ADR2G*	(2 3 3 3)	2500 Units / Tape & Reel
MC74HC4851ADTR2G	TSSOP-16	2500 Units / Tape & Reel
NLVHC4851ADTR2G*	(Pb-Free)	
MC74HC4851ADWR2G	SOIC-16 WIDE	1000 Units / Tape & Reel
NLVHC4851ADWR2G*	(Pb-Free)	
NLV74HC4851AMNTWG*#	QFN16	3000 Units / Tape & Reel
NLV74HC4851AMN1TWG*#	(Pb-Free)	3000 Units / Tape & Reel

MC74HC4852ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HC4852ADR2G		2500 Units / Tape & Reel
NLV74HC4852ADR2G*	, ,	2500 Units / Tape & Reel
MC74HC4852ADTR2G	TSSOP-16	2500 Units / Tape & Reel
NLVHC4852ADTR2G*	(Pb-Free)	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

[#]MN suffix is with pull-back lead, MN1 is without pull-back lead. Refer to 'Detail A' of case outline on page 16.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

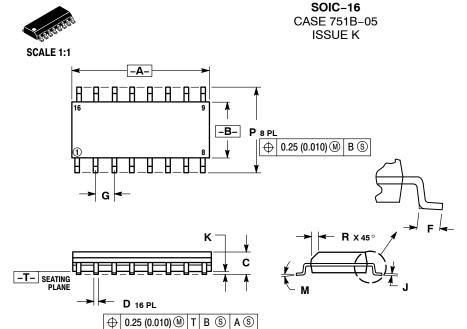
16X

0.30

DIMENSIONS: MILLIMETERS

DESCRIPTION:	QFN16, 2.5X3.5, 0.5P		PAGE 1 OF 1				
DOCUMENT NUMBER:	98AON36347E	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					

2.80


1.10

16X 0.60

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

PACKAGE

MECHANICAL CASE OUTLINE

DATE 29 DEC 2006

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- THE NOTION AND TOLETANOING FER ANSI'Y 14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- PHOI HUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION

 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D

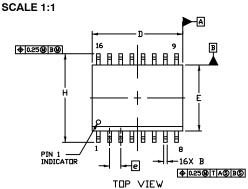
 DIMENSION AT MAXIMUM MATERIAL CONDITION.

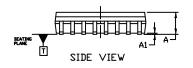
	MILLIN	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050	BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

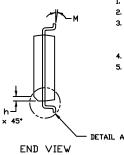
STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:			
PIN 1.	COLLECTOR	PIN 1.	CATHODE	PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE	#1	
2.	BASE	2.	ANODE	2.	BASE, #1	2.	COLLECTOR, #1		
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER, #1	3.	COLLECTOR, #2		
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2		
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3		
6.	BASE	6.	NO CONNECTION		BASE, #2	6.	COLLECTOR, #3		
7.	COLLECTOR	7.	ANODE	7.		7.	COLLECTOR, #4		
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4		
9.	BASE	9.	CATHODE	9.	COLLECTOR, #3	9.	BASE, #4		
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4		
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, #3	11.	BASE, #3		
12.	EMITTER	12.	CATHODE	12.	COLLECTOR, #3	12.	EMITTER, #3		
13.	BASE	13.	CATHODE	13.	COLLECTOR, #4	13.	BASE, #2	OOL DEDING	COOTDONT
14.	COLLECTOR	14.	NO CONNECTION	14.	BASE, #4	14.	EMITTER, #2	SOLDERING	FOOTPRINT
15.	EMITTER	15.	ANODE	15.	EMITTER, #4	15.	BASE, #1		8X
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1		i.40 — →
								- 0	.40
STYLE 5:		STYLE 6:		STYLE 7:					16X 1.12
PIN 1.	DRAIN, DYE #1		CATHODE	PIN 1.	SOURCE N-CH				10% 1.12
2.	DRAIN, #1		CATHODE	2.	COMMON DRAIN (OUTPU	Τ\		1	16
3.	DRAIN, #2	3.		3.	COMMON DRAIN (OUTPU			, L .	'0
3. 4.	DRAIN, #2	3. 4.	CATHODE	3. 4.	GATE P-CH	1)		- —	
4. 5.	DRAIN, #2	4. 5.	CATHODE	4. 5.	COMMON DRAIN (OUTPU	Τ\		, , , , , , , , , , , , , , , , , , , 	
5. 6.	DRAIN, #3	6.	CATHODE	6.	COMMON DRAIN (OUTPU		16	5X 1 -	
7.	DRAIN, #4	7.	CATHODE	7.	COMMON DRAIN (OUTPU		0.5	58	, L
8.	DRAIN, #4	8.	CATHODE	8.	SOURCE P-CH	•,			
9.	GATE, #4	9.	ANODE	9.	SOURCE P-CH				
10.	SOURCE, #4	10.	ANODE	10.	COMMON DRAIN (OUTPU	T)			
11.	GATE, #3	11.		11.	COMMON DRAIN (OUTPU				
12.	SOURCE, #3	12.		12.	COMMON DRAIN (OUTPU				
13.	GATE, #2	13.		13.	GATE N-CH	.,			
14.	SOURCE, #2	14.		14.	COMMON DRAIN (OUTPU	T)			V PITCH
15.	GATE, #1	15.	ANODE	15.	COMMON DRAIN (OUTPU				1 <u>+=</u> 1_1
16.	SOURCE, #1		ANODE	16.	SOURCE N-CH	.,			
								□ 8	9 + - + -
									~
									' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
									DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-16		PAGE 1 OF 1

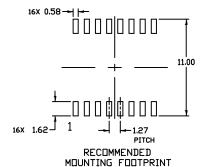
ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.



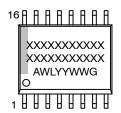



SOIC-16 WB CASE 751G ISSUE E

DATE 08 OCT 2021



DETAIL A


NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
- MAXIMUM MOLD PROTRUSION OR FLASH TO BE 0.15 PER SIDE.

	MILLIMETERS		
DIM	MIN.	MAX.	
Α	2.35	2.65	
A1	0.10	0.25	
В	0.35	0.49	
С	0.23	0.32	
D	10.15	10.45	
E	7.40	7.60	
е	1.27 BSC		
Н	10.05	10.55	
h	0.53 REF		
١	0.50	0.90	
М	0*	7*	

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location

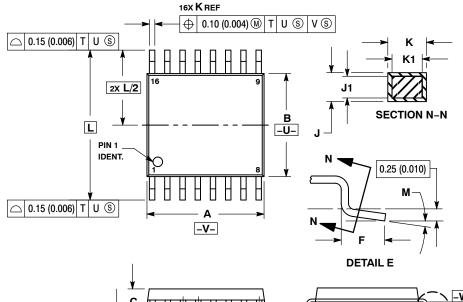
WL = Wafer Lot YY = Year ww = Work Week G = Pb-Free Package

DOCUMENT NUMBER:	98ASB42567B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-16 WB	•	PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

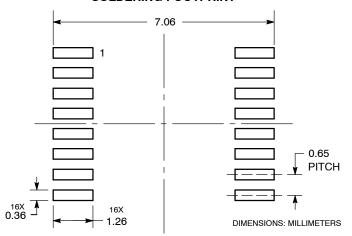
0.10 (0.004)


D

-T- SEATING PLANE

TSSOP-16 CASE 948F-01 ISSUE B

DATE 19 OCT 2006


NOTES

- JIES:
 DIMENSIONING AND TOLERANCING PER
 ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD
 FLASH. PROTRUSIONS OR GATE BURRS.
 MOLD EL ROLL OF GATE BURDS SUAL NO.
- MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
- 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
C		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.18	0.28	0.007	0.011
7	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
М	0°	8°	0 °	8°

SOLDERING FOOTPRINT

G

GENERIC MARKING DIAGRAM*

168888888 XXXX XXXX **ALYW** 188888888

XXXX = Specific Device Code Α = Assembly Location = Wafer Lot L

Υ = Year W = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1

DETAIL E

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.