8-Bit Addressable Latch 1-of-8 Decoder with LSTTL Inputs

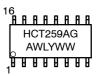
High-Performance Silicon-Gate CMOS

The MC74HCT259A is identical in pinout to the LS259. The device inputs are compatible with standard CMOS and LSTTL outputs.

The HCT259A has four modes of operation as shown in the mode selection table. In the addressable latch mode, the data on Data In is written into the addressed latch. The addressed latch follows the data input with all non-addressed latches remaining in their previous states. In the memory mode, all latches remain in their previous state and are unaffected by the Data or Address inputs. In the one-of-eight decoding or demultiplexing mode, the addressed output follows the state of Data In with all other outputs in the LOW state. In the Reset mode all outputs are LOW and unaffected by the address and data inputs. When operating the HCT259A as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 4.5 to 5.5 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- These are Pb-Free Devices

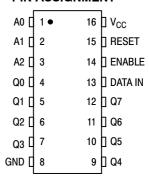

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

SOIC-16 D SUFFIX CASE 751B

TSSOP-16 DT SUFFIX CASE 948F



A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or = Pb-Free Package

(Note: Microdot may be in either location)

PIN ASSIGNMENT

MODE SELECTION TABLE

Enable	Reset	Mode
L	Н	Addressable Latch
Н	Н	Memory
L	L	8-Line Demultiplexer
Н	L	Reset

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

4 Q0 5 Q1 **ADDRESS INPUTS** 6 Q2 7 Q3 **NONINVERTING** 9 Q4 **OUTPUTS** 10 _{Q5} DATA IN 13 11 Q6 12 Q7 RESET PIN 16 = V_{CC} ENABLE 14 PIN 8 = GND

Figure 1. Logic Diagram

LATCH SELECTION TABLE

Ad	dress Inp	uts	
С	В	Α	Latch Addressed
L	L	L	Q0
L	L	H	Q1
L	Н	L	Q2
L	Н	Н	Q3
Н	L	L	Q4
Н	L	Н	Q5
Н	Н	L	Q6
Н	Н	Н	Q7

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
I _{in}	DC Input Current, per Pin	±20	mA
I _{out}	DC Output Current, per Pin	±25	mA
I _{CC}	DC Supply Current, V_{CC} and GND Pins	±50	mA
P _D	Power Dissipation in Still Air, SOIC Package TSSOP Package	500 450	mW
T _{stg}	Storage Temperature	-65 to + 150	°C
V _{ESD}	ESD Withstand Voltage Human Body Model (Note 1) Machine Model (Note 2)	>2000 >200	٧
I _{Latchup}	Latchup Performance Above V _{DD} and Below GND at 125°C (Note 3)	±100	mA

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Tested to EIA / JESD22-A114-A.
- 2. Tested to EIA / JESD22-A115-A.
- 3. Tested to EIA / JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	4.5	5.5	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)	0	V _{CC}	V
T _A	Operating Temperature, All Package Types	-55	+125	°C
t _r , t _f	Input Rise and Fall Time (Figure 2)	0	500	ns

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Guaranteed Limit			
Symbol	Parameter	Test Conditions	V _{CC} V	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit
V _{IH}	Minimum High-Level Input Voltage	$V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	4.5 5.5	2.0 2.0	2.0 2.0	2.0 2.0	V
V _{IL}	Maximum Low-Level Input Voltage	$V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	4.5 5.5	0.8 0.8	0.8 0.8	0.8 0.8	V
V _{OH}	Minimum High-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \ \mu A$	4.5 5.5	4.4 5.4	4.4 5.4	4.4 5.4	V
		$V_{in} = V_{IH} \text{ or } V_{IL} \qquad I_{out} \le 5.2 \text{ mA}$	4.5	3.98	3.84	3.70	
V _{OL}	Maximum Low-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \ \mu A$	4.5 5.5	0.1 0.1	0.1 0.1	0.1 0.1	V
		$V_{in} = V_{IH} \text{ or } V_{IL} $ $ I_{out} \le 5.2 \text{ mA}$	4.5	0.26	0.33	0.40	
I _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	5.5	± 0.1	± 1.0	± 1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$	5.5	4	40	160	μΑ
ΔI_{CC}	Additional Quiescent Supply	V _{in} = 2.4V, Any One Input		≥ -55°C	25 to 125°C		
	Ourient	$V_{in} = V_{CC}$ or GND, Other Inputs $I_{out} = 0\mu A$	5.5	2.9	2	.4	mA

AC ELECTRICAL CHARACTERISTICS (V $_{CC}$ = 4.5 to 5.5 V, C_L = 50 pF, Input t_r = t_f = 6 ns)

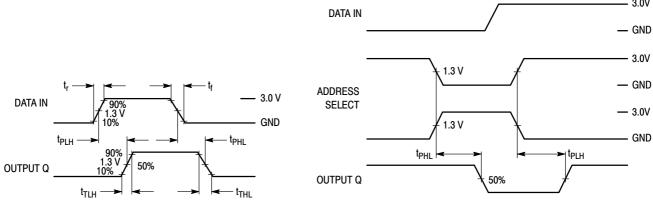
		Guaranteed Limit			
Symbol	Parameter	–55 to 25°C	≤ 85 °C	≤ 125°C	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Data to Output (Figures 2 and 7)	32	32	42	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Address Select to Output (Figures 3 and 7)	32	40	45	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Enable to Output (Figures 4 and 7)	32	40	45	ns
t _{PHL}	Maximum Propagation Delay, Reset to Output (Figures 5 and 7)	22	26	32	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 2 and 7)	15	19	22	ns
C _{in}	Maximum Input Capacitance	10	10	10	pF

		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance (Per Package)	30	pF

TIMING REQUIREMENTS ($V_{CC} = 4.5 \text{ to } 5.5 \text{ V}$, Input $t_r = t_f = 6 \text{ ns}$)

		Gu	Guaranteed Limit			
Symbol	Parameter	−55 to 25°C	≤ 85 °C	≤ 125°C	Unit	
t _{su}	Minimum Setup Time, Address or Data to Enable (Figure 6)	15	19	22	ns	
t _h	Minimum Hold Time, Enable to Address or Data (Figure 6)	1	1	1	ns	
t _w	Minimum Pulse Width, Reset or Enable (Figure 4 or 5)	15	19	22	ns	

SWITCHING WAVEFORMS



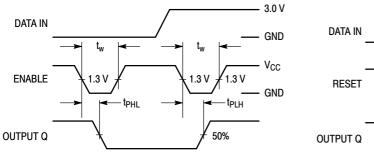

Figure 2.

Figure 3.

_ 3.0V

- 3.0V

- GND

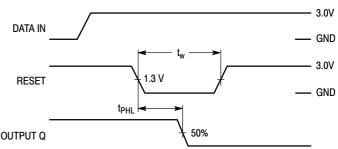


Figure 5.

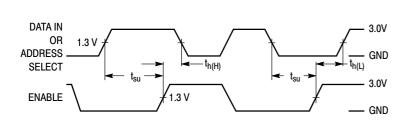
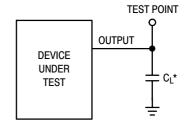
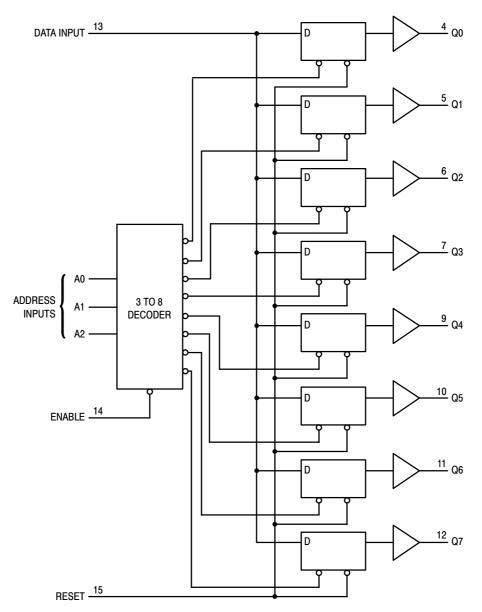
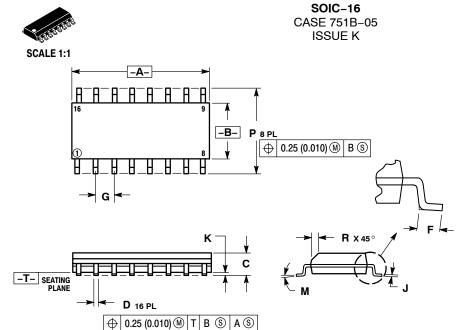



Figure 6.

*Includes all probe and jig capacitance

Figure 7. Test Circuit




Figure 8. Expanded Logic Diagram

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HCT259ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HCT259ADR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74HCT259ADTR2G	TSSOP-16*	2500 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently Pb-Free.

MECHANICAL CASE OUTLINE

DATE 29 DEC 2006

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- THE NOTION AND TOLETANOING FER ANSI'Y 14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- PHOI HUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION

 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D

 DIMENSION AT MAXIMUM MATERIAL CONDITION.

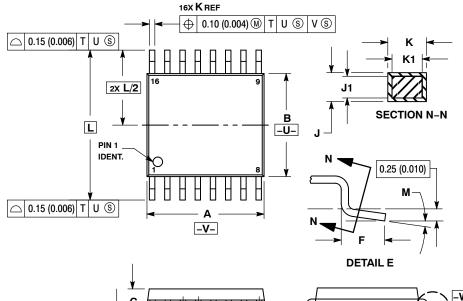
	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050	BSC
7	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

STYLE 1: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	COLLECTOR BASE EMITTER NO CONNECTION EMITTER BASE COLLECTOR COLLECTOR BASE EMITTER NO CONNECTION EMITTER BASE COLLECTOR EMITTER COLLECTOR COLLECTOR COLLECTOR	2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	CATHODE NO CONNECTION ANODE CATHODE CATHODE ANODE NO CONNECTION CATHODE CATHODE NO CONNECTION	STYLE 3: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.	COLLECTOR, DYE #1 BASE, #1 EMITTER, #1 COLLECTOR, #1 COLLECTOR, #2 BASE, #2 EMITTER, #2 COLLECTOR, #2 COLLECTOR, #3 BASE, #3 EMITTER, #3 COLLECTOR, #3 COLLECTOR, #4 BASE, #4 EMITTER, #4 COLLECTOR, #4	STYLE 4: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.	COLLECTOR, DYE COLLECTOR, #1 COLLECTOR, #2 COLLECTOR, #3 COLLECTOR, #3 COLLECTOR, #4 COLLECTOR, #4 EMITTER, #4 BASE, #3 EMITTER, #3 BASE, #2 EMITTER, #2 BASE, #1 EMITTER, #1	SOLDERING FOOTPRINT SX 6.40 H SX SX SX SX SX SX SX SX SX	
STYLE 5: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	DRAIN, DYE #1 DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 GATE, #4 SOURCE, #4 GATE, #2 SOURCE, #3 GATE, #2 SOURCE, #1 SOURCE, #1	3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE	STYLE 7: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.	SOURCE N-CH COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT GATE P-CH COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT GATE N-CH COMMON DRAIN (OUTPUT GATE N-CH COMMON DRAIN (OUTPUT SOURCE N-CH		16 0.£	16X 1.12	1.27 PITCH

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-16		PAGE 1 OF 1		

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

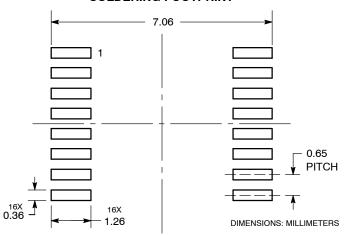
☐ 0.10 (0.004)


D

-T- SEATING PLANE

TSSOP-16 CASE 948F-01 ISSUE B

DATE 19 OCT 2006


NOTES

- JIES:
 DIMENSIONING AND TOLERANCING PER
 ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD
 FLASH. PROTRUSIONS OR GATE BURRS.
 MOLD EL ROLL OF GATE BURDS SUAL NO.
- MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
- 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
C		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.18	0.28	0.007	0.011
7	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
М	0 °	8°	0 °	8 °

SOLDERING FOOTPRINT

G

GENERIC MARKING DIAGRAM*

168888888 XXXX XXXX **ALYW** 188888888

XXXX = Specific Device Code Α = Assembly Location

= Wafer Lot L Υ = Year W = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1	

DETAIL E

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.