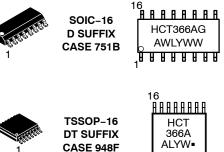
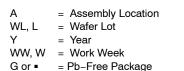
Hex 3-State Inverting Buffer with Common Enables and LSTTL Compatible Inputs

High-Performance Silicon-Gate CMOS


The MC74HCT366A is identical in pinout to the LS366. The device inputs are compatible with standard CMOS or LSTTL outputs.

This device is a high-speed hex buffer with 3-state outputs and two common active-low Output Enables. When either of the enables is high, the buffer outputs are placed into high-impedance states. The HCT366A has inverting outputs.


Features

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 µA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 90 FETs or 22.5 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These are Pb–Free Devices*

88888888

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

OUTPUT ENABLE 1	1•	16	l v _{cc}
A0 [2	15	OUTPUT ENABLE 2
Y0 [3	14] A5
A1 [4	13] Y5
Y1 [5	12] A4
A2 [6	11] Y4
Y2 [7	10] A3
	8	9] Y3

Figure 1. Pin Assignment

FUNCTION TABLE

Inputs			Output
Enable 1	Enable 2	А	Y
L	L	L	н
L	L	Н	L
н	Х	Х	Z
Х	Н	Х	Z

X = don't care

Z = high impedance

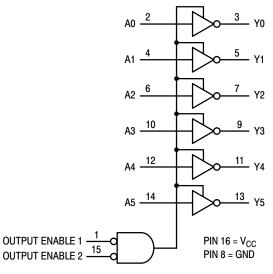


Figure 2. Logic Diagram

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HCT366ADG	SOIC-16	48 Units / Rail
MC74HCT366ADR2G	(Pb-Free)	2500 Units / Reel
MC74HCT366ADTR2G	TSSOP-16	2500 Units / Reel
NLVHCT366ADTRG*	(Pb-Free)	2500 Units / Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

MAXIMUM RATINGS*

Symbol	Parameter		Value	Unit
V _{CC}	DC Supply Voltage (Referenced	d to GND)	- 0.5 to + 7.0	V
Vin	DC Input Voltage (Referenced t	o GND)	-0.5 to V_{CC} + 0.5	V
Vout	DC Output Voltage (Referenced	C Output Voltage (Referenced to GND)		
l _{in}	DC Input Current, per Pin	Input Current, per Pin		mA
I _{out}	DC Output Current, per Pin	ut Current, per Pin		mA
I _{CC}	DC Supply Current, V _{CC} and G	ND Pins	± 50	mA
PD	Power Dissipation in Still Air,	SOIC Package† TSSOP Package†	500 450	mW
T _{stg}	Storage Temperature		– 65 to + 150	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND $\leq (V_{in} \text{ or } V_{out}) \leq V_{CC}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating — SOIC Package: - 7 mW/°C from 65° to 125°C

TSSOP Package: - 6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)			6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)			V _{CC}	V
T _A	Operating Temperature, All Package Types			+ 125	°C
t _r , t _f	(Figure 1)	$V_{CC} = 2.0 V V_{CC} = 3.0 V V_{CC} = 4.5 V V_{CC} = 6.0 V$	0 0 0 0	1000 600 500 400	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

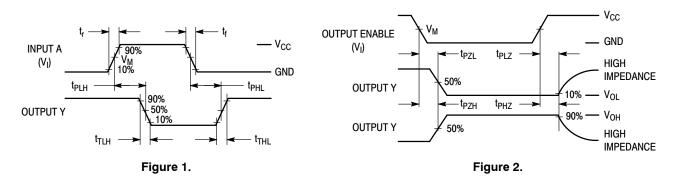
					Gu	aranteed Li	mit	
Symbol	Parameter	Test Cor	ditions	v _{cc} v	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
V _{IH}	Minimum High–Level Input Voltage	$\begin{aligned} V_{out} = V_{CC} - 0.1 V\\ I_{out} &\leq 20 \ \mu A \end{aligned}$	/	4.5 to 5.5	2.0	2.0	2.0	V
V _{IL}	Maximum Low–Level Input Voltage	$\begin{array}{l} V_{out} = 0.1 \ V \\ \left I_{out} \right \leq 20 \ \mu A \end{array}$		4.5 to 5.5	0.80	0.80	0.80	V
V _{OH}	Minimum High–Level Output Voltage	$V_{in} = V_{IH}$ $ I_{out} \le 20 \ \mu A$		2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		V _{in} = V _{IH}	$\begin{split} I_{out} &\leq 3.6 \text{ mA} \\ I_{out} &\leq 6.0 \text{ mA} \\ I_{out} &\leq 7.8 \text{ mA} \end{split}$	3.0 4.5 6.0	2.48 3.98 5.48	2.34 3.84 5.34	2.20 3.70 5.20	
V _{OL}	Maximum Low–Level Output Voltage			2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		V _{in} = V _{IL}	$\begin{array}{l} \left I_{out}\right \leq 3.6 \text{ mA} \\ \left I_{out}\right \leq 6.0 \text{ mA} \\ \left I_{out}\right \leq 7.8 \text{ mA} \end{array}$	3.0 4.5 6.0	0.26 0.26 0.26	0.33 0.33 0.33	0.40 0.40 0.40	
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GNE		6.0	± 0.1	± 1.0	± 1.0	μA

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

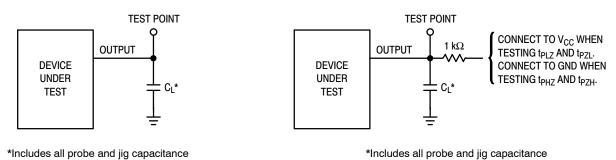
				Guaranteed Limit			
Symbol	Parameter	Test Conditions	V _{CC} V	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
I _{OZ}	Maximum Three-State Leakage Current	$\begin{array}{l} \text{Output in High-Impedance State} \\ \text{V}_{in} = \text{V}_{IL} \text{ or } \text{V}_{IH} \\ \text{V}_{out} = \text{V}_{CC} \text{ or } \text{GND} \end{array}$	6.0	± 0.5	±5.0	± 10	μA
I _{CC}	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC} \text{ or GND}$ $I_{out} = 0 \ \mu A$	6.0	4	40	160	μA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS (C_L = 50 pF, Input t_r = t_f = 6 ns)


		Gu	Guaranteed Limit			
Symbol	Parameter	V _{CC} V	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input A to Output Y (Figures 1 and 3)	2.0 3.0 4.5 6.0	120 60 24 20	150 75 30 26	180 90 36 31	ns
t _{PLZ} , t _{PHZ}	Maximum Propagation Delay, Output Enable to Output Y (Figures 2 and 4)	2.0 3.0 4.5 6.0	220 110 44 37	275 140 55 47	330 170 66 56	ns
t _{PZL} , t _{PZH}	Maximum Propagation Delay, Output Enable to Output Y (Figures 2 and 4)	2.0 3.0 4.5 6.0	220 110 44 37	275 140 55 47	330 170 66 56	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 1 and 3)	2.0 3.0 4.5 6.0	60 22 12 10	75 28 15 13	90 34 18 15	ns
C _{in}	Maximum Input Capacitance	_	10	10	10	pF
C _{out}	Maximum Three-State Output Capacitance (Output in High-Impedance State)	_	15	15	15	pF
			Typical	@ 25°C, V _C	_C = 5.0 V	

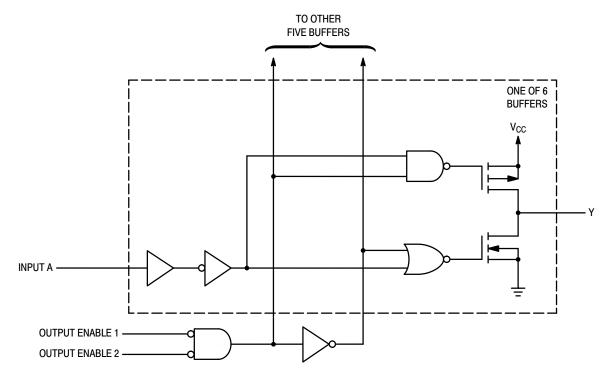
 CPD
 Power Dissipation Capacitance (Per Buffer)*
 60
 pF


*Used to determine the no-load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

SWITCHING WAVEFORMS

(V_I = 0 to 3 V, V_M = 1.3 V)

TEST CIRCUITS



*Includes all probe and jig capacitance

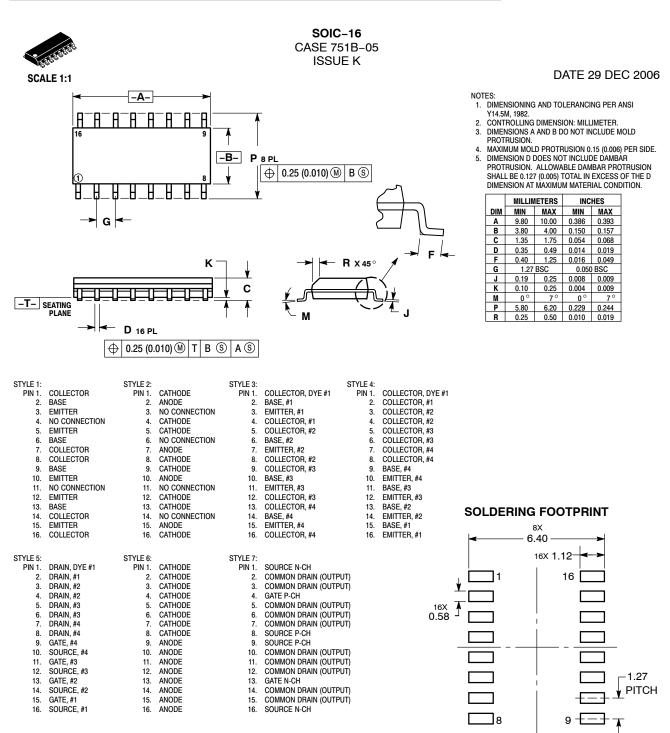
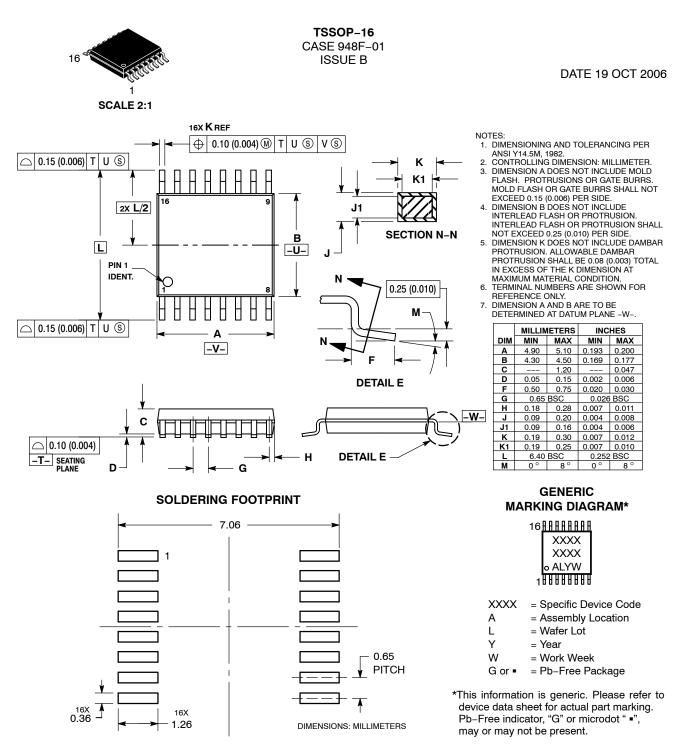

Figure 3.

Figure 4.



DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOIC-16		PAGE 1 OF 1			
ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding						

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1			
ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.						

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.