Low-Voltage CMOS Quad 2-Input XOR Gate

With 5 V-Tolerant Inputs

The MC74LCX86 is a high performance, quad 2–input XOR gate operating from a 2.3 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5 V allows MC74LCX86 inputs to be safely driven from 5.0 V devices.

Current drive capability is 24 mA at the outputs.

Features

- Designed for 2.3 to 3.6 V V_{CC} Operation
- 5.0 V Tolerant Inputs Interface Capability With 5.0 V TTL Logic
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current (10 μA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000 V Machine Model >200 V
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

http://onsemi.com

		MARKING DIAGRAMS
14	SOIC-14 D SUFFIX CASE 751A	14 R R R R R R R LCX86G O AWLYWW 1 U U U U U U U
14 1	TSSOP-14 DT SUFFIX CASE 948G	14 HHHHHH LCX 86 ALYW 0 I 1 HHHHHH
,	_ = Wafer L ′ = Year ′W = Work W	
(Note: Mi	crodot mav be	in either location)

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

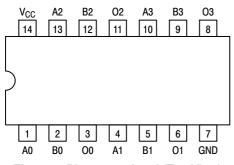


Figure 1. Pinout: 14-Lead (Top View)

PIN NAMES

Pins	Function
An, Bn	Data Inputs
On	Outputs

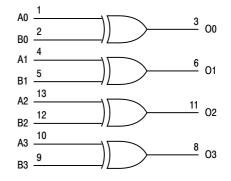


Figure 2. Logic Diagram

TRUTH TABLE

Inp	Outputs	
An	Bn	On
L	L	L
L	н	Н
Н	L	Н
Н	Н	L

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Units
V _{CC}	DC Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	$-0.5 \le V_{l} \le +7.0$		V
Vo	DC Output Voltage	$-0.5 \le V_{\rm O} \le V_{\rm CC} + 0.5$	Note 1	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{ОК}	DC Output Diode Current	-50	V _O < GND	mA
		+50	$V_{O} > V_{CC}$	mA
Ι _Ο	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current Per Supply Pin	±100		mA
I _{GND}	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C
MSL	Moisture Sensitivity		Level 1	

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Output in HIGH or LOW State. Io absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Max	Units
V _{CC}	Supply Voltage Operating Data Retention Only	2.0 1.5	3.3 3.3	3.6 3.6	V
VI	Input Voltage	0		5.5	V
Vo	Output Voltage (HIGH or LOW State)	0		V _{CC}	V
I _{ОН}	HIGH Level Output Current, V _{CC} = 3.0 V – 3.6 V			-24	mA
I _{OL}	LOW Level Output Current, V _{CC} = 3.0 V - 3.6 V			24	mA
I _{ОН}	HIGH Level Output Current, V _{CC} = 2.7 V – 3.0 V			-12	mA
I _{OL}	LOW Level Output Current, V_{CC} = 2.7 V – 3.0 V			12	mA
T _A	Operating Free-Air Temperature	-40		+85	°C
$\Delta t/\Delta V$	Input Transition Rise or Fall Rate, V _{IN} from 0.8 V to 2.0 V, V _{CC} = 3.0 V	0		10	ns/V

DC ELECTRICAL CHARACTERISTICS

			T _A = −40°C	to +85°C	
Symbol	Characteristic	Condition	Min	Max	Units
V _{IH}	HIGH Level Input Voltage (Note 2)	$2.7 \text{ V} \le \text{V}_{\text{CC}} \le 3.6 \text{ V}$	2.0		V
V _{IL}	LOW Level Input Voltage (Note 2)	$2.7 \text{ V} \le \text{V}_{\text{CC}} \le 3.6 \text{ V}$		0.8	V
V _{OH}	HIGH Level Output Voltage	$2.7 \text{ V} \le \text{V}_{\text{CC}} \le 3.6 \text{ V}; \text{ I}_{\text{OH}} = -100 \ \mu\text{A}$	V _{CC} – 0.2		V
		V _{CC} = 2.7 V; I _{OH} = -12 mA	2.2		
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OH} = -18 \text{ mA}$	2.4		
		V _{CC} = 3.0 V; I _{OH} = -24 mA	2.2		
V _{OL}	LOW Level Output Voltage	$2.7 \text{ V} \le \text{V}_{\text{CC}} \le 3.6 \text{ V}; \text{ I}_{\text{OL}} = 100 \mu\text{A}$		0.2	V
		$V_{CC} = 2.7 \text{ V}; \text{ I}_{OL} = 12 \text{ mA}$		0.4	
		V _{CC} = 3.0 V; I _{OL} = 16 mA		0.4	
		V _{CC} = 3.0 V; I _{OL} = 24 mA		0.55	
I _{OFF}	Power Off Leakage Current	V_{CC} = 0, V_{IN} = 5.5 V or V_{OUT} = 5.5 V		10	μΑ
I _{IN}	Input Leakage Current	V_{CC} = 3.6 V, V_{IN} = 5.5 V or GND		±5	μΑ
I _{CC}	Quiescent Supply Current	V_{CC} = 3.6 V, V_{IN} = 5.5 V or GND		10	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$2.3 \le V_{CC} \le 3.6 \text{ V}; \text{ V}_{IH} = V_{CC} - 0.6 \text{ V}$		500	μA

2. These values of V_I are used to test DC electrical characteristics only.

AC CHARACTERISTICS ($t_R = t_F = 2.5ns$; $C_L = 50pF$; $R_L = 500\Omega$)

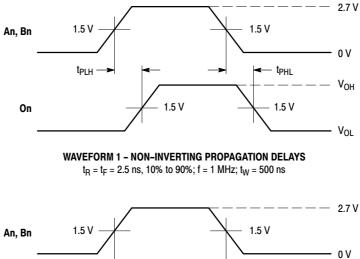
				Limits		
			T _A = -40°C to +85°C			
			V _{CC} = 3.0	V to 3.6 V	V _{CC} = 2.7 V	
Symbol	Parameter	Waveform	Min	Max	Max	Units
t _{PLH} t _{PHL}	Propagation Delay Input to Output	1,2	1.5 1.5	6.5 6.5	7.0 7.0	ns
t _{OSHL} t _{OSLH}	Output-to-Output Skew (Note 3)			1.0 1.0		ns

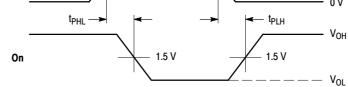
3. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

			T _A = +25°C			
Symbol	Characteristic	Condition	Min	Тур	Max	Units
V _{OLP}	Dynamic LOW Peak Voltage (Note 4)	V_{CC} = 3.3 V, C_L = 50 pF, V_{IH} = 3.3 V, V_{IL} = 0 V		0.8		V
V _{OLV}	Dynamic LOW Valley Voltage (Note 4)	V_{CC} = 3.3 V, C_L = 50 pF, V_{IH} = 3.3 V, V_{IL} = 0 V		0.8		V

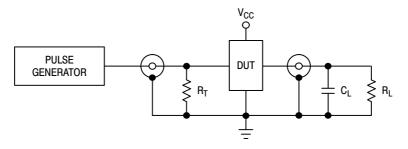
4. Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.


CAPACITIVE CHARACTERISTICS

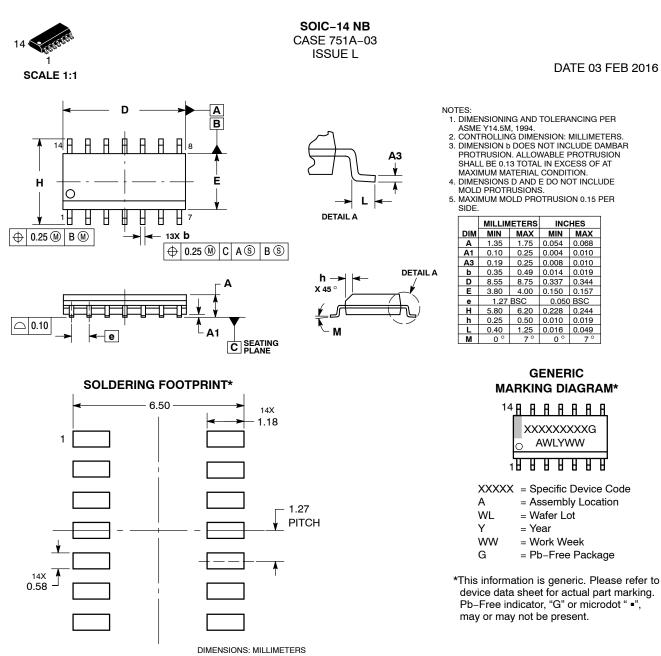

Symbol	Parameter	Condition	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	7	pF
C _{OUT}	Output Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	25	pF

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74LCX86DR2G	SOIC-14 (Pb-Free)	2500 Tape & Reel
MC74LCX86DTR2G	TSSOP-14 (Pb-Free)	2500 Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

WAVEFORM 2 – INVERTING PROPAGATION DELAYS $t_{R} = t_{F} = 2.5$ ns, 10% to 90%; f = 1 MHz; $t_{W} = 500$ ns



 $\begin{array}{l} C_L = 50 pF \text{ or equivalent (Includes jig and probe capacitance)} \\ R_L = R_1 = 500 \; \Omega \text{ or equivalent} \\ R_T = Z_{OUT} \text{ of pulse generator (typically 50 } \Omega) \end{array}$

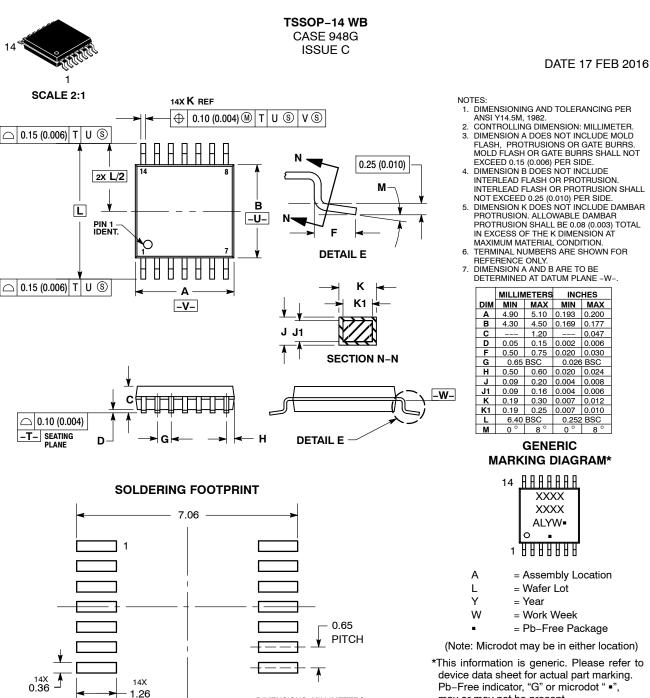
Figure 4. Test Circuit

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED 0	
DESCRIPTION:	SOIC-14 NB		PAGE 1 OF 2
ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other count ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regar the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specific disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor rights of others.			

SOIC-14 CASE 751A-03 ISSUE L


DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2		
ON Semiconductor and M are trademarks of Semiconductor Components Industries 11 C dba ON Semiconductor or its subsidiaries in the United States and/or other countries					

ON Semiconductor and united states and/or other countries. LC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

may or may not be present.

DOCUMENT NUMBER:	98ASH70246A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP-14 WB		PAGE 1 OF 1	
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the				

DIMENSIONS: MILLIMETERS

© Semiconductor Components Industries, LLC, 2019