# **Dual D-Type Flip-Flop** with Set and Clear

## With 5.0 V–Tolerant Inputs

The MC74LVX74 is an advanced high speed CMOS D-type flip-flop. The inputs tolerate voltages up to 7.0 V, allowing the interface of 5.0 V systems to 3.0 V systems.

The signal level applied to the D input is transferred to O output during the positive going transition of the Clock pulse.

Clear ( $\overline{CD}$ ) and Set ( $\overline{SD}$ ) are independent of the Clock (CP) and are accomplished by setting the appropriate input Low.

#### Features

- High Speed:  $f_{max} = 145$  MHz (Typ) at  $V_{CC} = 3.3$  V
- Low Power Dissipation:  $I_{CC} = 2 \mu A$  (Max) at  $T_A = 25^{\circ}C$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Low Noise:  $V_{OLP} = 0.5 V (Max)$
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance:

Human Body Model > 2000 V; Machine Model > 200 V

• These Devices are Pb-Free and are RoHS Compliant

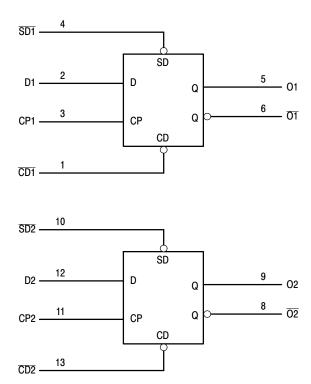
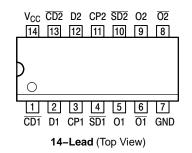


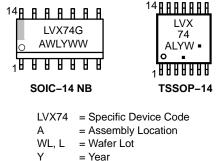

Figure 1. Logic Diagram



## **ON Semiconductor®**


http://onsemi.com




D SUFFIX CASE 751A

TSSOP-14 DT SUFFIX CASE 948G





#### MARKING DIAGRAMS



- W, WW = Work Week
- G or = Pb-Free Package

(Note: Microdot may be in either location)

| PIN NAMES                                            |                                                                                          |  |  |  |  |
|------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|--|
| Pins                                                 | Function                                                                                 |  |  |  |  |
| CP1, CP2<br>D1, D2<br>CD1, CD2<br>SD1, SD2<br>On, On | Clock Pulse Inputs<br>Data Inputs<br>Direct Clear Inputs<br>Direct Set Inputs<br>Outputs |  |  |  |  |

#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

|        | INP    | UTS    |        | OUTPUTS |        |                                        |
|--------|--------|--------|--------|---------|--------|----------------------------------------|
| SDn    | CDn    | CPn    | Dn     | On      | On     | OPERATING MODE                         |
| L<br>H | H<br>L | X<br>X | X<br>X | H<br>L  | L<br>H | Asynchronous Set<br>Asynchronous Clear |
| L      | L      | Х      | х      | н       | Н      | Undetermined                           |
| H<br>H | H<br>H | ↑<br>↑ | h<br>I | H<br>L  | L<br>H | Load and Read Register                 |
| Н      | Н      | 1      | Х      | NC      | NC     | Hold                                   |

H = High Voltage Level; h = High Voltage Level One Setup Time Prior to the Low-to-High Clock Transition; L = Low Voltage Level; I = Low Voltage Level One Setup Time Prior to the Low-to-High Clock Transition; NC = No Change; X = High or Low Voltage Level or Transitions are Acceptable;  $\uparrow$  = Low-to-High Transition;  $\uparrow$  = Not a Low-to-High Transition; For I<sub>CC</sub> Reasons DO NOT FLOAT Inputs

#### MAXIMUM RATINGS

| Symbol           | Parameter                                       | Value                        | Unit |
|------------------|-------------------------------------------------|------------------------------|------|
| V <sub>CC</sub>  | DC Supply Voltage                               | -0.5 to +7.0                 | V    |
| V <sub>in</sub>  | DC Input Voltage                                | -0.5 to +7.0                 | V    |
| Vout             | DC Output Voltage                               | –0.5 to V <sub>CC</sub> +0.5 | V    |
| I <sub>IK</sub>  | Input Diode Current                             | -20                          | mA   |
| I <sub>OK</sub>  | Output Diode Current                            | ±20                          | mA   |
| I <sub>out</sub> | DC Output Current, per Pin                      | ±25                          | mA   |
| I <sub>CC</sub>  | DC Supply Current, V <sub>CC</sub> and GND Pins | ±50                          | mA   |
| PD               | Power Dissipation                               | 180                          | mW   |
| T <sub>stg</sub> | Storage Temperature                             | -65 to +150                  | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

#### **RECOMMENDED OPERATING CONDITIONS**

| Symbol                | Parameter                                | Min | Max             | Unit |
|-----------------------|------------------------------------------|-----|-----------------|------|
| V <sub>CC</sub>       | DC Supply Voltage                        | 2.0 | 3.6             | V    |
| V <sub>in</sub>       | DC Input Voltage                         | 0   | 5.5             | V    |
| V <sub>out</sub>      | DC Output Voltage                        | 0   | V <sub>CC</sub> | V    |
| TA                    | Operating Temperature, All Package Types | -40 | +85             | °C   |
| $\Delta t / \Delta V$ | Input Rise and Fall Time                 | 0   | 100             | ns/V |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

#### DC ELECTRICAL CHARACTERISTICS

|                 |                                                                                      |                                                                | v <sub>cc</sub>   | 1                  | 「 <sub>A</sub> = 25°0 | 2                  | $T_{A} = -40$      | to 85°C            |      |
|-----------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------|--------------------|-----------------------|--------------------|--------------------|--------------------|------|
| Symbol          | Parameter                                                                            | Test Conditions                                                | V                 | Min                | Тур                   | Max                | Min                | Max                | Unit |
| V <sub>IH</sub> | High–Level Input Voltage                                                             |                                                                | 2.0<br>3.0<br>3.6 | 1.5<br>2.0<br>2.4  |                       |                    | 1.5<br>2.0<br>2.4  |                    | V    |
| V <sub>IL</sub> | Low-Level Input Voltage                                                              |                                                                | 2.0<br>3.0<br>3.6 |                    |                       | 0.5<br>0.8<br>0.8  |                    | 0.5<br>0.8<br>0.8  | V    |
| V <sub>OH</sub> | High–Level Output Voltage<br>(V <sub>in</sub> = V <sub>IH</sub> or V <sub>IL</sub> ) | $I_{OH} = -50\mu A$<br>$I_{OH} = -50\mu A$<br>$I_{OH} = -4m A$ | 2.0<br>3.0<br>3.0 | 1.9<br>2.9<br>2.58 | 2.0<br>3.0            |                    | 1.9<br>2.9<br>2.48 |                    | V    |
| V <sub>OL</sub> | Low-Level Output Voltage $(V_{in} = V_{IH} \text{ or } V_{IL})$                      | $I_{OL} = 50\mu A$<br>$I_{OL} = 50\mu A$<br>$I_{OL} = 4m A$    | 2.0<br>3.0<br>3.0 |                    | 0.0<br>0.0            | 0.1<br>0.1<br>0.36 |                    | 0.1<br>0.1<br>0.44 | V    |
| l <sub>in</sub> | Input Leakage Current                                                                | $V_{in} = 5.5 V \text{ or GND}$                                | 3.6               |                    |                       | ±0.1               |                    | ±1.0               | μΑ   |
| I <sub>CC</sub> | Quiescent Supply Current                                                             | $V_{in} = V_{CC}$ or GND                                       | 3.6               |                    |                       | 2.0                |                    | 20.0               | μΑ   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

#### **AC ELECTRICAL CHARACTERISTICS** (Input $t_r = t_f = 3.0$ ns)

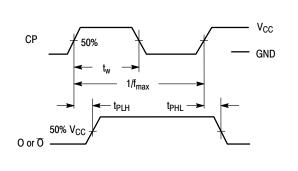
|                                        |                                             |                                                       |                                | ٦        | T <sub>A</sub> = 25°C |              |            | ) to 85°C    |      |
|----------------------------------------|---------------------------------------------|-------------------------------------------------------|--------------------------------|----------|-----------------------|--------------|------------|--------------|------|
| Symbol                                 | Parameter                                   | Test Condi                                            | tions                          | Min      | Тур                   | Max          | Min        | Max          | Unit |
| t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | Propagation Delay CP to O or $\overline{O}$ | V <sub>CC</sub> = 2.7V                                | $C_L = 15pF$<br>$C_L = 50pF$   |          | 7.3<br>9.8            | 15.0<br>18.5 | 1.0<br>1.0 | 18.5<br>22.0 | ns   |
|                                        |                                             | $V_{CC} = 3.3 \pm 0.3 V$                              | $C_L = 15pF$<br>$C_L = 50pF$   |          | 5.7<br>8.2            | 9.7<br>13.2  | 1.0<br>1.0 | 11.5<br>15.0 |      |
| t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | Propagation Delay<br>SD or CD to O or O     | V <sub>CC</sub> = 2.7V                                | $C_L = 15pF$<br>$C_L = 50pF$   |          | 8.4<br>10.9           | 15.6<br>19.1 | 1.0<br>1.0 | 18.5<br>22.0 | ns   |
|                                        |                                             | $V_{CC}=3.3\pm0.3V$                                   | $C_L = 15pF$<br>$C_L = 50pF$   |          | 6.6<br>9.1            | 10.1<br>13.6 | 1.0<br>1.0 | 12.0<br>15.5 |      |
| f <sub>max</sub>                       | Maximum Clock Frequency<br>(50% Duty Cycle) | V <sub>CC</sub> = 2.7V                                | $C_L = 15pF$<br>$C_L = 50pF$   | 55<br>45 | 135<br>60             |              | 50<br>40   |              | MHz  |
|                                        |                                             | $V_{CC} = 3.3 \pm 0.3 V$                              | $C_L = 15pF$<br>$C_L = 50pF$   | 95<br>60 | 145<br>85             |              | 80<br>50   |              |      |
| t <sub>OSHL</sub><br>t <sub>OSLH</sub> | Output-to-Output Skew<br>(Note 1)           | V <sub>CC</sub> = 2.7V<br>V <sub>CC</sub> = 3.3 ±0.3V | $C_L = 50 pF$<br>$C_L = 50 pF$ |          |                       | 1.5<br>1.5   |            | 1.5<br>1.5   | ns   |

 Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t<sub>OSHL</sub>) or LOW-to-HIGH (t<sub>OSLH</sub>); parameter guaranteed by design.

#### **TIMING REQUIREMENTS** (Input t<sub>r</sub> = t<sub>f</sub> = 3.0ns)

|                  |                                       | v <sub>cc</sub>   |                       | Guaranteed Limit            |      |  |  |  |
|------------------|---------------------------------------|-------------------|-----------------------|-----------------------------|------|--|--|--|
| Symbol           | Parameter                             | V                 | T <sub>A</sub> = 25°C | $T_A = -40$ to $85^\circ C$ | Unit |  |  |  |
| t <sub>w</sub>   | Minimum Pulse Width, CP               | 2.7V<br>3.3V ±0.3 | 8.5<br>6.0            | 10.0<br>7.0                 | ns   |  |  |  |
| t <sub>w</sub>   | Minimum Pulse Width, CD or SD         | 2.7V<br>3.3V ±0.3 | 8.5<br>6.0            | 10.0<br>7.0                 | ns   |  |  |  |
| t <sub>su</sub>  | Minimum Setup Time, D to CP           | 2.7V<br>3.3V ±0.3 | 8.0<br>5.5            | 9.5<br>6.5                  | ns   |  |  |  |
| t <sub>h</sub>   | Minimum Hold Time, D to CP            | 2.7V<br>3.3V ±0.3 | 0.5<br>0.5            | 0.5<br>0.5                  | ns   |  |  |  |
| t <sub>rec</sub> | Minimum Recovery Time, SD or CD to CP | 2.7V<br>3.3V ±0.3 | 6.5<br>5.0            | 7.5<br>5.0                  | ns   |  |  |  |

#### **CAPACITIVE CHARACTERISTICS**


|                 |                                        | T <sub>A</sub> = 25°C |     | $T_A = -40$ to $85^{\circ}C$ |     |     |      |
|-----------------|----------------------------------------|-----------------------|-----|------------------------------|-----|-----|------|
| Symbol          | Parameter                              | Min                   | Тур | Max                          | Min | Max | Unit |
| Cin             | Input Capacitance                      |                       | 4   | 10                           |     | 10  | pF   |
| C <sub>PD</sub> | Power Dissipation Capacitance (Note 2) |                       | 25  |                              |     |     | pF   |

 C<sub>PD</sub> is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I<sub>CC(OPR)</sub> = C<sub>PD</sub> • V<sub>CC</sub> • f<sub>in</sub> + I<sub>CC</sub>/2 (per flip–flop). C<sub>PD</sub> is used to determine the no–load dynamic power consumption; P<sub>D</sub> = C<sub>PD</sub> • V<sub>CC</sub><sup>2</sup> • f<sub>in</sub> + I<sub>CC</sub> • V<sub>CC</sub>.

#### **NOISE CHARACTERISTICS** (Input $t_r = t_f = 3.0$ ns, $C_L = 50$ pF, $V_{CC} = 3.3$ V, Measured in SOIC Package)

|                  |                                              | T <sub>A</sub> = 25°C |      |      |
|------------------|----------------------------------------------|-----------------------|------|------|
| Symbol           | Characteristic                               | Тур                   | Max  | Unit |
| V <sub>OLP</sub> | Quiet Output Maximum Dynamic V <sub>OL</sub> | 0.3                   | 0.5  | V    |
| V <sub>OLV</sub> | Quiet Output Minimum Dynamic V <sub>OL</sub> | -0.3                  | -0.5 | V    |
| V <sub>IHD</sub> | Minimum High Level Dynamic Input Voltage     |                       | 2.0  | V    |
| V <sub>ILD</sub> | Maximum Low Level Dynamic Input Voltage      |                       | 0.8  | V    |

#### SWITCHING WAVEFORMS



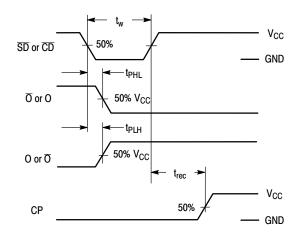



Figure 2.

Figure 3.

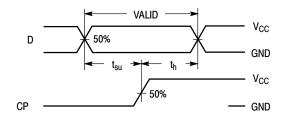
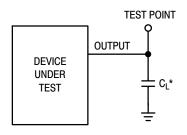
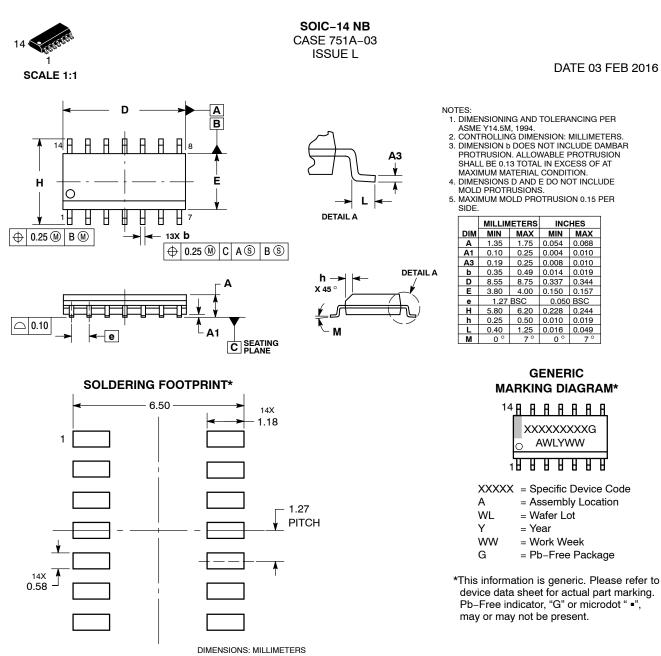




Figure 4.

#### **TEST CIRCUIT**



\*Includes all probe and jig capacitance




#### **ORDERING INFORMATION**

| Device         | Package                 | Shipping <sup>†</sup> |
|----------------|-------------------------|-----------------------|
| MC74LVX74DR2G  | SOIC-14 NB<br>(Pb-Free) | 2500 Tape & Reel      |
| MC74LVX74DTG   | TSSOP-14<br>(Pb-Free)   | 96 Units / Rail       |
| MC74LVX74DTR2G | TSSOP-14<br>(Pb-Free)   | 2500 Tape & Reel      |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.



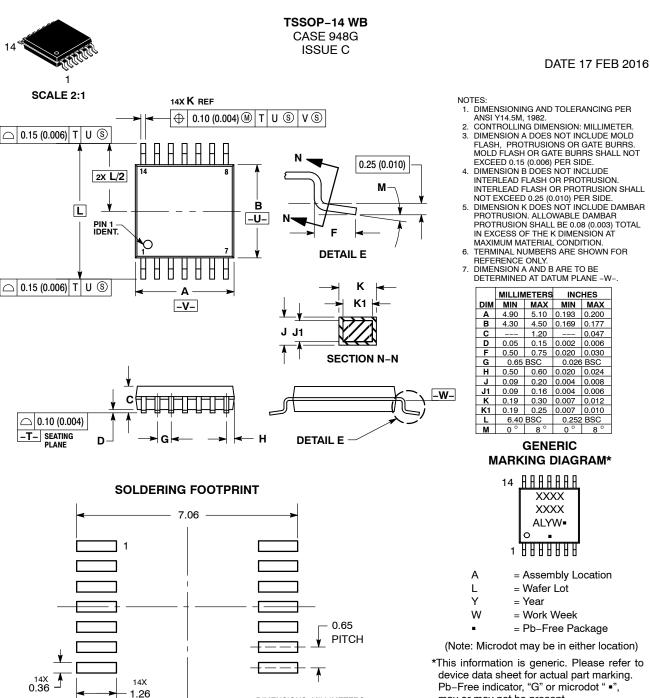


\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### **STYLES ON PAGE 2**

| DOCUMENT NUMBER:                                                                  | 98ASB42565B                                                                                 | Electronic versions are uncontrolled except when accessed directly from<br>Printed versions are uncontrolled except when stamped "CONTROLLED 0                                                                                                                                                               |                                                        |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| DESCRIPTION:                                                                      | SOIC-14 NB                                                                                  |                                                                                                                                                                                                                                                                                                              | PAGE 1 OF 2                                            |
| ON Semiconductor reserves the right<br>the suitability of its products for any pa | to make changes without further notice to an<br>articular purpose, nor does ON Semiconducto | stries, LLC dba ON Semiconductor or its subsidiaries in the United States<br>y products herein. ON Semiconductor makes no warranty, representation<br>r assume any liability arising out of the application or use of any product o<br>ncidental damages. ON Semiconductor does not convey any license under | or guarantee regarding<br>or circuit, and specifically |

#### SOIC-14 CASE 751A-03 ISSUE L


#### DATE 03 FEB 2016

| STYLE 1:<br>PIN 1. COMMON CATHODE<br>2. ANODE/CATHODE<br>3. ANODE/CATHODE<br>4. NO CONNECTION<br>5. ANODE/CATHODE<br>6. NO CONNECTION<br>7. ANODE/CATHODE<br>8. ANODE/CATHODE<br>9. ANODE/CATHODE<br>10. NO CONNECTION<br>11. ANODE/CATHODE<br>12. ANODE/CATHODE<br>13. NO CONNECTION<br>14. COMMON ANODE | STYLE 2:<br>CANCELLED                                                                                                                                                                                   | STYLE 3:<br>PIN 1. NO CONNECTION<br>2. ANODE<br>3. ANODE<br>4. NO CONNECTION<br>5. ANODE<br>6. NO CONNECTION<br>7. ANODE<br>8. ANODE<br>9. ANODE<br>10. NO CONNECTION<br>11. ANODE<br>12. ANODE<br>13. NO CONNECTION<br>14. COMMON CATHODE                                            | STYLE 4:<br>PIN 1. NO CONNECTION<br>2. CATHODE<br>3. CATHODE<br>4. NO CONNECTION<br>5. CATHODE<br>6. NO CONNECTION<br>7. CATHODE<br>8. CATHODE<br>10. NO CONNECTION<br>11. CATHODE<br>12. CATHODE<br>13. NO CONNECTION<br>14. COMMON ANODE                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STYLE 5:<br>PIN 1. COMMON CATHODE<br>2. ANODE/CATHODE<br>3. ANODE/CATHODE<br>4. ANODE/CATHODE<br>5. ANODE/CATHODE<br>6. NO CONNECTION<br>7. COMMON ANODE<br>8. COMMON CATHODE<br>10. ANODE/CATHODE<br>11. ANODE/CATHODE<br>12. ANODE/CATHODE<br>13. NO CONNECTION<br>14. COMMON ANODE                     | STYLE 6:<br>PIN 1. CATHODE<br>2. CATHODE<br>3. CATHODE<br>4. CATHODE<br>5. CATHODE<br>6. CATHODE<br>7. CATHODE<br>8. ANODE<br>9. ANODE<br>10. ANODE<br>11. ANODE<br>12. ANODE<br>13. ANODE<br>14. ANODE | STYLE 7:<br>PIN 1. ANODE/CATHODE<br>2. COMMON ANODE<br>3. COMMON CATHODE<br>4. ANODE/CATHODE<br>5. ANODE/CATHODE<br>6. ANODE/CATHODE<br>8. ANODE/CATHODE<br>9. ANODE/CATHODE<br>10. ANODE/CATHODE<br>11. COMMON CATHODE<br>12. COMMON ANODE<br>13. ANODE/CATHODE<br>14. ANODE/CATHODE | STYLE 8:<br>PIN 1. COMMON CATHODE<br>2. ANODE/CATHODE<br>3. ANODE/CATHODE<br>4. NO CONNECTION<br>5. ANODE/CATHODE<br>6. ANODE/CATHODE<br>7. COMMON ANODE<br>9. ANODE/CATHODE<br>10. ANODE/CATHODE<br>11. NO CONNECTION<br>12. ANODE/CATHODE<br>13. ANODE/CATHODE<br>14. COMMON CATHODE |

| DOCUMENT NUMBER:                                                                                                                                                       | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| DESCRIPTION:                                                                                                                                                           | SOIC-14 NB  |                                                                                                                                                                                     | PAGE 2 OF 2 |  |  |
| ON Semiconductor and M are trademarks of Semiconductor Components Industries 11 C dba ON Semiconductor or its subsidiaries in the United States and/or other countries |             |                                                                                                                                                                                     |             |  |  |

ON Semiconductor and united states and/or other countries. LC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.





may or may not be present.

| DOCUMENT NUMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TSSOP-14 WB |                                                                                                                                                                                     | PAGE 1 OF 1 |  |
| ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.<br>ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding<br>the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically<br>disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the |             |                                                                                                                                                                                     |             |  |

DIMENSIONS: MILLIMETERS

© Semiconductor Components Industries, LLC, 2019