MC9S08SU16 16 KB Flash

40 MHz S08L Based Microcontroller

MC9S08SU16 and MC9S08SU8 are low-cost, high-performance and high integration UHV HCS08 8-bit microcontroller units (MCU). It uses the enhanced S08L central processor unit with 3 phase MOSFET pre-drivers unit which supports 3 high-side PMOSes and 3 low-side NMOSes, amplifiers for current measurement, OCP (over current protection) and OVP (over voltage protection). It is put into a 4mm x 4mm 24-pin QFN package, targeting drone electrical speed controller, low power motor control, small form cooling fan control and portable tools.

MC9S08SU16VFK MC9S08SU8VFK

Core

- S08L core up to 40 MHz
- Bus up to 20 MHz

Memories

- 16 KB program flash memory for SU16 and 8 KB program flash memory for SU8
- 768 byte SRAM, 256 B of which is unrestricted, the other 512 B is restricted during Flash erasing and programming
- 8 bytes regfile

System peripherals

- Windowed COP with multiple clock sources (watch dog)
- Inter module connection module
- CRC

Clocks

- External clock input
- 32 kHz tunable internal RC oscillator
- 20 kHz low power clock

Operating Characteristics

- Voltage range: 4.5 to 18 V
- Temperature range (ambient): -40 to 105°C

Human-machine interface

• 5 V input/output for logical I/O

Communication interfaces

- One SCI module
- One I2C module supporting SMbus communications interface

Analog Modules

- Two 12-bit ADC with up to 8 channels
- Analog comparator with up to 4 inputs and internal 6-bit DAC
- High voltage GDU

Timers

- Two 16-bit pulse width timers (PWT)
- Two programmable delay block (PDB)
- One 16-bit FTM
- One 16-bit modulo timer (MTIM)
- One 16-bit 6-channel PWM

Security and integrity modules

• 64-bit unique identification number per chip

Ordering information

Related resources

1. To find the associated resource, go to nxp.com and perform a search using this term.

2. To find the associated resource, go to nxp.com and perform a search using this term with the "x" replaced by the revision of the device you are using.

[Figure 1](#page-2-0) shows the functional modules in the chip.

Figure 1. Functional block diagram

Table of Contents

Ratings 1

1.1 Thermal handling ratings

1. Determined according to JEDEC Standard JESD22-A103, *High Temperature Storage Life*.

2. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

1.2 Moisture handling ratings

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

1.3 ESD handling ratings

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, *Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components*.

1.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the limits specified in below table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DDX}) or the programmable pullup resistor associated with the pin is enabled.

1. See [Table 2](#page-7-0) for detail.

2. All digital I/O pins, except open-drain pin PTA4 and PTA5, are internally clamped to V_{SS} and V_{DDX} . PTA4 and PTA5 is only clamped to V_{SS} .

General 2

Nonswitching electrical specifications 2.1

2.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Symbol	C		Descriptions		Min	Typical ¹	Max	Unit
			Operating voltage		4.5		18	V
V_{OH}	P	Output high voltage	All I/O pins, standard-drive strength	$5 V, Iload =$ -5 mA	$V_{DDX} - 0.8$			\vee
	P		High current drive pins, high-drive strength ²	5 V, I_{load} = -20 mA	V_{DDX} - 0.8			\vee
I_{OHT}	D	Output high current	Max total I_{OH} for all ports	5 V			-100	mA
V_{OL}	P	Output low voltage	All I/O pins, standard-drive strength	$5 V, Iload =$ 5 mA			0.8	V
	P		High current drive pins, high-drive strength ²	5 V, I _{load} $=20$ mA			0.8	V
I _{OLT}	D	Output low current	Max total I_{OL} for all ports	5 V			100	mA
V _{IH}	P	Input high	All digital inputs	$V_{DDX} > 4.5V$	$0.70 \times V_{DDX}$			V
	$\mathbf C$	voltage		$V_{DDX} > 2.7V$	$0.75 \times V_{DDX}$			
V_{IL}	P	Input low	All digital inputs	$V_{DDX} > 4.5V$			$0.30 \times V_{DDX}$	V
	C	voltage		$V_{DDX} > 2.7V$			$0.35 \times V_{DDX}$	
V_{hys}	C	Input hysteresis	All digital inputs		$0.06 \times V_{DDX}$			mV
$ _n$	P	Input leakage current	All input only pins (per pin)	$V_{IN} = V_{DDX}$ or V _{SS}		0.1	1	μA
II _{OZTOT} I	$\mathbf C$	Total leakage combined for all inputs and Hi-Z pins	All input only and I/O	$V_{IN} = V_{DDX}$ or V _{SS}			$\mathbf{2}$	μA

Table 1. DC characteristics

Table 1. DC characteristics (continued)

1. Typical values are measured at 25 °C. Characterized, not tested.

- 2. Only PTB3, PTB4, PTB5, and PTB7 are high drive pins, and support ultra-high current output.
- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- 4. The specified resistor value is the actual value internal to the device. The pulldown value may appear higher when measured externally on the pin.
- 5. All functional non-supply pins, except PTA4 and PTA5, are internally clamped to V_{SS} and V_{DDX} .
- 6. Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the large one.
- 7. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Table 2. Power supply electrical characteristics

Symbol	Description		Min.	Typical	Max.	Unit
VLVWA	V _{DDX} Low voltage	PMC_LVCTLSTAT1[SLVWSEL] = 1b	3.43	3.63	3.83	V
	warning assert level	PMC_LVCTLSTAT1[SLVWSEL] = 0b	3.94	4.14	4.34	
VLVWD	V _{DDX} Low voltage	PMC_LVCTLSTAT1[SLVWSEL] = 1b	3.54	3.74	3.94	$\mathsf V$
	warning deassert level	PMC_LVCTLSTAT1[SLVWSEL] = 0b	4.08	4.28	4.48	
VLVRA	V _{DDX} low voltage reset assert		2.97	3.02	$\overline{}$	V
VLVRD	V _{DDX} low voltage reset deassertl				3.13	V
VLVWREFHA	Low voltage warning	PMC_VREFHLVW[LVWCFG]=00b	3.34	3.54	3.74	\vee
	for V _{REFH} assert level ⁴	PMC_VREFHLVW[LVWCFG]=01b	3.43	3.63	3.83	$\mathsf V$
		PMC_VREFHLVW[LVWCFG]=10b	3.86	4.06	4.26	\vee
		PMC_VREFHLVW[LVWCFG]=11b	4.11	4.31	4.51	\vee
VLVWREFHA	Low voltage warning	PMC_VREFHLVW[LVWCFG]=00b	3.45	3.65	3.85	$\mathsf V$
	for V _{REFH} deassert level ⁴	PMC_VREFHLVW[LVWCFG]=01b	3.55	3.75	3.95	\vee
		PMC_VREFHLVW[LVWCFG]=10b	4.00	4.20	4.40	\vee
		PMC_VREFHLVW[LVWCFG]=11b	4.27	4.47	4.67	\vee
f LPOCLK	Trimmed LPOCLK output frequency			20		kHz
df LPOCLK		Trimmed LPOCLK internal clock Af / f _{NOMINAL} ⁵	-5	$\overline{}$	5	$\%$
t_{SDEL}	LPOCLK start up delay		$\overline{}$	25	50	μs
dV_{HT}	Temperature sensor slope			5.07		mV /° C
V_{HT}	Temperature sensor output voltage			1.73		V
T _{HTIA}	High temperature interrupt assert ⁶		110	130	150	$^{\circ}$ C
T _{HTID}	High temperature interrupt deassert ⁶		100	120	140	$^{\circ}C$
V _{BG}	Bandgap output voltage		1.13	1.2	1.32	V
V_{HCBG}	HC Bandgap output voltage		1.14	1.15	1.16	\vee
t _{STP_REC}	Recovery time from	not including V _{REFH}		15		μs
	Stop	including V _{REFH}		1		ms

Table 2. Power supply electrical characteristics (continued)

1. Typical values are measured at 25 °C.

2. Power supply enters reduced power mode when MCU is in Stop mode.

3. This typical value is configurable based on V_{REC} .

4. PMC_VREFHLVW[LVWCFG]=01b is recommended for the configuration.

5. User need to trim the LPOCLK in order to get ±5% LPOCLK

6. This is junction temperature.

[Figure 2](#page-9-0) illustrates the power distribution of this chip.

Figure 3. Typical I_{OH} **Vs. V_{DDX}-V_{OH} (standard drive strength) (V_{DDX} = 5 V)**

Figure 4. Typical I_{OH} **Vs. V_{DDX}-V_{OH} (high drive strength) (V_{DDX} = 5 V)**

Figure 5. Typical I_{OL} **Vs. V_{OL} (standard drive strength) (V_{DDX} = 5 V)**

 $I_{OL}(mA)$

Figure 6. Typical I_{OL} Vs. V_{OL} (high drive strength) (V_{DDX} = 5 V)

2.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

C	Parameter	Symbol	Core/Bus Freq	$V_{DD} (V)$	Typical ¹	Max	Unit	Temp
C	Run supply current, FEI	RI _{DD}	40/20 MHz	18	11.00		mA	-40 to 105 °C
C	mode, all clock gate is off, code run from flash		20/10 MHz		7.50			
			20/1 MHz		6.00			
C			20/20 MHz	12 ²	9.15			
C			20/10 MHz		7.50			
			20/1 MHz		5.95			
			20/20 MHz	5.3	9.10			
			20/10 MHz		7.45			
			20/1 MHz		5.90			
			20/20 MHz	4.5	9.35			
			20/10 MHz		7.65			
			20/1 MHz		6.15			

Table 3. Supply current characteristics

1. Data in Typical column was characterized at 25 $^{\circ}$ C or is typical recommended value.

2.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

2.1.3.1 EMC radiated emissions operating behaviors

NOTE

If using external reset switch to design hardware board, connect two 0.1 μF decoupling capacitors on RESET pin for EMC-sensitive applications. One is near the RESET pin and the other is near the reset switch.

Symbol	Description	Frequency band (MHz)	Typ.	Unit	Notes
V_{RE1}	Radiated emissions voltage, band 1	$0.15 - 50$	4	dBµV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	$50 - 150$	3	dBuV	
V _{RE3}	Radiated emissions voltage, band 3	150-500	3	dBuV	
$\mathsf{V}_{\mathsf{RE4}}$	Radiated emissions voltage, band 4	500-1000	4	dBuV	
V_{RE} IEC	IEC/SAE level	$0.15 - 1000$	O		2, 3

Table 4. EMC radiated emissions operating behaviors for 24-pin QFN package

- 2. V_{DD} = 12.0 V, T_A = 25 °C, f_{sys} = 40 MHz, f_{bus} = 20 MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, *Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method*

Switching specifications 2.2

2.2.1 Control timing

Table 5. Control timing

^{1.} Determined according to IEC Standard 61967-1, *Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions* and IEC Standard 61967-2, *Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method*. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

С	Rating		Symbol	Min	Typical ¹	Max	Unit
C	Port rise and fall time -		t _{Rise}		10.2		ns
C	Normal drive strength $(HDRVE_PTXx = 0)$ (load $= 50 \text{ pF}$ ⁵		t _{Fall}		9.5		ns
C	Port rise and fall time -		^I Rise		5.4		ns
C	Extreme high drive strength (HDRVE_PTXx = 1) (load = 50 pF) 5		t _{Fall}		4.6		ns

Table 5. Control timing (continued)

- 1. Typical values are based on characterization data at $V_{DDX} = 5.0 V$, 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a reset pin request.
- 3. To enter BDM mode following a POR, BKGD/MS must be held low during the powerup and for a hold time of t_{MSH} after V_{DDX} rises above V_{LVD} .
- 4. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- 5. Timing is shown with respect to 20% V_{DDX} and 80% V_{DDX} levels. Temperature range -40 °C to 105 °C.

Figure 8. IRQ/KBIPx timing

2.2.2 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

No.	v	Function	Symbol	Min	Max	Unit
		External clock frequency	^I TCLK		$f_{\text{Bus}}/4$	Hz
		External clock period	TTCLK	4		L cyc

Table 6. FTM input timing

No.	С	Function	Symbol	Min	Max	Unit
З	D	External clock high time	t _{clkh}	1.5		$\mathfrak{t}_{\text{cyc}}$
	D	External clock low time	$\mathsf{t}_{\mathsf{c}\mathsf{l}\mathsf{k}\mathsf{l}}$	1.5		L cyc
5	D	Input capture pulse width	t _{ICPW}	1.5		L cyc

Table 6. FTM input timing (continued)

Figure 9. Timer external clock

Figure 10. Timer input capture pulse

Thermal specifications 2.3

2.3.1 Thermal operating requirements Table 7. Thermal operating requirements

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is: T_J = T_A + R_{θJA} × chip power dissipation.

2.3.2 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DDX} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DDX} will be very small.

Board type	Symbol	Description	24-pin QFN	Unit	Notes
Single-layer (1S)	R_{θ JA	Thermal resistance, junction to ambient (natural convection)	114	\degree C/W	1, 2
Four-layer (2s2p)	R_{θ JA	Thermal resistance, junction to ambient (natural convection)	42	\degree C/W	1, 3
Single-layer (1S)	$R_{\theta JMA}$	Thermal resistance, junction to ambient (200 ft./min. air speed)	96	\degree C/W	1, 3
Four-layer (2s2p)	$R_{\theta JMA}$	Thermal resistance, junction to ambient (200 ft./min. air speed)	36	°C/W	1, 3
	R_{θ JB	Thermal resistance, junction to board	19	°C/W	$\overline{\mathbf{4}}$
	R_{θ JC	Thermal resistance, junction to case	3.4	\degree C/W	5
	Ψ_{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	15	\degree C/W	6

Table 8. Thermal attributes

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.
- 3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization.

3 Peripheral operating requirements and behaviors

3.1 ICS characteristics

Table 9. ICS specifications (temperature range = -40 to 105 °C ambient)

1. Data in Typical column was characterized at $V_{\text{DDX}} = 5.0 V$, 25 °C or is typical recommended value.

- 2. When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.
- 3. This parameter is characterized and not tested on each device.
- 4. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, DMX32 bit is changed, DRS bit is changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 5. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{BUS} . Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DDX} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

3.2 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash memories.

C	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	NVM Bus frequency	INVMBUS			20	MHz
D	NVM Operating frequency	TNVMOP	0.8		1.05	MHz
D	Erase Verify All Blocks	I VFYALL			2605	L cyc
D	Erase Verify Flash Block	^I RD1BLK			2579	L cyc
D	Erase Verify Flash Section	^I RD1SEC			485	L cyc
D	Read Once	IRDONCE			464	L cyc

Table 10. Flash characteristics

1. Minimum times are based on maximum f_{NVMOP} and maximum f_{NVMBUS}

2. Typical times are based on typical f_{NVMOP} and maximum f_{NVMBUS}

3. Maximum times are based on typical f_{NVMOP} and typical f_{NVMBUS} plus aging

4. $t_{\text{cyc}} = 1 / f_{\text{NVMBUS}}$

Program and erase operations do not require any special power sources other than the normal V_{DDX} supply. For more detailed information about program/erase operations, see the Flash Memory Module section in the reference manual.

3.3 Analog

3.3.1 ADC characteristics

Table 11. 5 V 12-bit ADC operating conditions

Characteri stic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Input voltage		VADIN	V _{REFL}		V_{REFH}	v	
Input capacitanc e		C_{ADIN}		4.5	5.5	pF	
Input resistance		R_{ADIN}		3	5	$k\Omega$	

Characteri stic	Conditions	Symb	Min	Type ¹	Max	Unit	Comment
Analog source resistance	12-bit mode f_{ADC} > 4 MHz	R_{AS}			2 5	$k\Omega$	External to MCU
	f_{ADC} < 4 MHz ٠						
	10-bit mode f_{ADC} > 4 MHz				5		
	f_{ADC} < 4 MHz \bullet				10		
	8-bit mode				10		
	(all valid f _{ADCK})						
ADC	High speed (ADLPC=0)	$f_{\sf ADCK}$	0.4		8.0	MHz	
conversion clock frequency	Low power (ADLPC=1)		0.4		4.0		

Table 11. 5 V 12-bit ADC operating conditions (continued)

1. Typical values assume $V_{DDA} = 5.0 V$, Temp = 25°C, f_{ADC} =1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

Figure 11. ADC input impedance equivalency diagram

Characteristic	Conditions	$\mathbf c$	Symb	Min	Typ ¹	Max	Unit
$ADCO = 1$							
Supply current		$\mathsf T$	I_{DDA}		218		μA
$ADLPC = 1$							
$ADLSMP = 0$							
$ADCO = 1$							
Supply current		$\mathsf T$	I _{DDA}		327		μA
$ADLPC = 0$							
$ADLSMP = 1$							
$ADCO = 1$							
Supply current		$\mathsf T$	I _{DDAD}		582	990	μA
$ADLPC = 0$							
$ADLSMP = 0$							
$ADCO = 1$							
Supply current	Stop, reset, module off	T	I _{DDA}		0.011	$\mathbf{1}$	μA
ADC asynchronous clock source	High speed (ADLPC $= 0$	$\mathsf T$	f _{ADACK}	$\overline{2}$	3.3	5	MHz
	Low power (ADLPC $= 1$			1.25	$\overline{2}$	3.3	
Conversion time (including sample	Short sample $(ADLSMP = 0)$	\top	t_{ADC}		20		ADCK cycles
time)	Long sample $(ADLSMP = 1)$				40		
Sample time	Short sample $(ADLSMP = 0)$	T	t_{ADS}		3.5		ADCK cycles
	Long sample $(ADLSMP = 1)$				23.5		
Total unadjusted	12-bit mode	\top	E_{TUE}		±5.5		LSB ⁴
Error ^{2, 3}	10-bit mode	$\mathsf T$			±1.7	±2.0	
	8-bit mode	T			± 0.9	± 1.0	
Differential Non-	12-bit mode	$\mathsf T$	DNL		1.4	$\overline{}$	LSB ⁴
Linearity ³	10-bit mode ⁵	${\sf P}$			0.5		
	8-bit mode ⁵	\top			0.15		
Integral Non-	12-bit mode	\top	INL		1.4		LSB ⁴
Linearity ³	10-bit mode	\top		—	0.5	—	
	8-bit mode	$\mathsf T$			0.15	—	
Zero-scale error ⁶	12-bit mode	C	E_{ZS}		±2.0		LSB ⁴
	10-bit mode	$\mathsf T$			±0.25	±1.0	
	8-bit mode	\top			± 0.65	± 1.0	
Full-scale error ⁷	12-bit mode	$\sf T$	E_{FS}		±2.5		LSB ⁴

Table 12. 12-bit ADC Characteristics (V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA}) (continued)

Characteristic	Conditions	C	Symb	Min	Typ ¹	Max	Unit
	10-bit mode	᠇			±0.5	±1.0	
	8-bit mode	᠇			±0.5	±1.0	
Quantization error	\leq 12 bit modes	D	E_Q			±0.5	LSB ⁴
Input leakage error ⁸	all modes	D	E_{IL}		I_{In} * R_{AS}		mV
Temp sensor slope	-40° C -25° C	D	m		3.266		mV ^o C
	25°C-125°C				3.638		
Temp sensor voltage	25° C	D	V TEMP25		1.36		v

Table 12. 12-bit ADC Characteristics (V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA}) (continued)

1. Typical values assume V_{DDX} = 5.0 V, V_{DD} \ge 5.3 V, Temp = 25°C, f_{ADC} =1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

2. Includes quantization.

3. To get better ADC performance: For the application case of V_{DD} <5.3 V, suggest to select V_{REFH} as ADC reference. For the application case VDD≥5.3 V, suggest to select V_{DDX} as ADC reference.

- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 5. Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes
- 6. $V_{ADIN} = V_{SSA}$
- 7. $V_{ADIN} = V_{DDA}$
- 8. I_{In} = leakage current (refer to DC characteristics)

3.3.2 CMP and 6-bit DAC electrical specifications

Table 13. Comparator and 6-bit DAC electrical specifications

Symbol	Description		Min.	Typ.	Max.	Unit
		50 mV delta voltage		1000	1500	ns
	Analog comparator initialization delay ¹				40	μs
DAC6b	6-bit DAC current adder (enabled)					μA
INL	6-bit DAC integral non-linearity		-0.5		0.5	LSB ²
DNL	6-bit DAC differential non-linearity		-0.3		0.3	LSB

Table 13. Comparator and 6-bit DAC electrical specifications (continued)

1. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

2. 1 LSB = $V_{reference}/64$

Figure 13. Typical hysteresis vs. Vin level $(V_{DDX} = 5.0 V, PMODE = 1)$

Figure 14. Typical propagation delay vs. Vin level (V_{DDX} = 5.0 V, high speed mode))

Figure 15. Typical propagation delay vs. Vin level (V_{DDX}=5.0 V, low speed mode))

3.3.3 GDU characteristics

Symbol	Description		Min.	Typ.	Max.	Unit	Note
R.	Internal resistor for voltage divider			17		$k\Omega$	
R1	PGA internal resistor 1			6.4x20		kΩ	$\overline{2}$
R ₂	PGA internal resistor 2			6.4		$k\Omega$	$\overline{2}$
V _{shant}	Current shunt resistor Delta voltage for negative and positive current sensor function		-80		80	mV	$\overline{2}$
V_{OH}	DC VOH for HS, V _{DDX} =5 V, V _{DD} =12 V	$I_{Load} = 5$ mA	V_{DD} -570	VDD -301		mV	
		$I_{Load} = 10$ mA	VDD -580	VDD -313		mV	
		$I_{Load} = 15 \text{ mA}$	V_{DD} -590	V_{DD} -323		mV	
		$I_{Load} = 20 \text{ mA}$	V_{DD} -600	V_{DD} -333		mV	
	DC VOH for LS, $V_{DDX}=5 I_{Load}=5$ mA V, V _{DD} =12 V		$VDDX$ -570	V _{DDX} -360		mV	
		IL _{nad} =15 mA	V_{DDX} -580	V_{DDX} -400		mV	
		$I_{Load} = 20 \text{ mA}$	V_{DDX} -600	V_{DDX} -420		mV	
V_{OL}	DC VOL for HS, $V_{DDX}=5 I_{Load}=5$ mA			295	570	mV	
	$V, V_{DD} = 12 V$	$I_{Load} = 10$ mA		305	580	mV	

Table 14. GDU electrical specifications

1. Customer need to add external resistor Rext1 for voltage divider. For example ,if Rext1=85 kΩ ,1/6 voltage divider; if Rext1=105 kΩ ,1/7 voltage divider.

2. PGA gain is default to 20X. User can cascade one external series resistor (Rext2) to reduce the PGA gain. To keep the current sensor PGA output without saturation distortion, the selected Rext2 must meet PGA output=V_{REF}+(R1/ $(R2+R_{ext2})$)xV_{shunt}, V_{REF}=0.5xV_{DDX}, see reference manual for the R1 and R2.

3. This 5.5 V is a rough value, each part might has different value but around 5.5 V.

Symbol	Description	Min.	Typ.	Max.	Unit
V_{DDX}	Supply voltage	4.20	5.0	5.25	\vee
I _{DDHS}	Supply current, high-speed mode (EN=1, PMODE=1)		100		μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)		18	20	μA
V _{AIN}	Analog input voltage	$\mathbf{0}$		V_{DDX} -1	\vee
V_{AIO}	Analog input offset voltage			40	mV
V_H	Analog comparator hysteresis				
	• CRO[HYSTCTR] = 0		15	20	mV
	$CRO[HYSTCTR] = 1$ \bullet		20	30	mV
V _{CMPOh}	Output high	V_{DDX} – 0.5			\vee
V _{CMPOI}	Output low			0.5	\vee
I_{ALKG}	Analog input leakage current			20	nA
t_{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1), 200mV delta voltage		70	120	ns
t_{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0), 200mV delta voltage		400	600	ns
	Analog comparator initialization delay ¹			40	μs

Table 15. GDU phase detector ACMP electrical specifications

1. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

Table 16. GDU over current protect ACMP electrical specifications

Table 16. GDU over current protect ACMP electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit
DNL	differential non-linearity 16-bit DAC	\sim - −ບ.ບ		ົ υ.υ	LSB

1. This ACMP is used for over-current protection, customer can use low power mode to avoid sparkles. Digital filter can produce max of 12.8 µs filter window.

2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

3. 1 LSB = $V_{reference}/64$

3.4 Communication interfaces

3.4.1 Inter-Integrated Circuit Interface (I2C) timing Table 17. I2C timing

1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only achieved when using the High drive pins (see [DC characteristics\)](#page-6-0) or when using the Normal drive pins and $V_{\text{DDX}} \geq 2.7$ V

2. The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL lines.

3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.

4. Input signal Slew = 10 ns and Output Load = 50 pF

5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.

Dimensions

6. A Fast mode I²C bus device can be used in a Standard mode I2C bus system, but the requirement t_{SU; DAT} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line $t_{\rm max} + t_{\rm SU}$; $_{\text{DAT}}$ = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification) before the SCL line is released. 7. C_b = total capacitance of the one bus line in pF.

Figure 16. Timing definition for fast and standard mode devices on the I2C bus

Dimensions 4

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to [nxp.com](http://www.nxp.com) and perform a keyword search for the drawing's document number:

Pinout 5

5.1 Signal multiplexing and pin assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

5.2 Pinout

The following figures show the pinout diagrams for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see [Signal multiplexing and pin assignments.](#page-29-0)

Figure 17. 24-pin QFN pinout diagram

Part identification 6

6.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

6.2 Format

Part numbers for this device have the following format:

MC 9 S08 SU AA B CC

6.3 Fields

This table lists the possible values for each field in the part number :

6.4 Example

This is an example part number:

MC9S08SU16VFK

Terminology and guidelines 7

7.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

7.1.1 Example

This is an example of an operating requirement:

7.2 Definition: Operating behavior

Unless otherwise specified, an *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

7.2.1 Example

This is an example of an operating behavior:

7.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

7.3.1 Example

This is an example of an attribute:

7.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- *Operating ratings* apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

7.4.1 Example

This is an example of an operating rating:

7.5 Result of exceeding a rating

7.6 Relationship between ratings and operating requirements

7.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

7.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

7.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

7.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

7.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

7.10 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 19. Parameter Classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

8 Revision history

The following table provides a revision history for this document.

