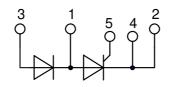

MCMA140PD1200TB

Thyristor \ Diode Module

V_{RRM}	<i>=</i> 2x 1200 V				
I _{tav}	=	140 A			
VT	=	1.28 V			


Phase leg

Part number MCMA140PD1200TB

Backside: isolated

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability
- Direct Copper Bonded Al2O3-ceramic

Applications:

- Line rectifying 50/60 Hz
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

Package: TO-240AA

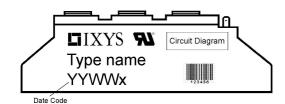
- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

IXYS reserves the right to change limits, conditions and dimensions.

MCMA140PD1200TB


Rectifier				1	Ratings	5	1
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM/DSM}	max. non-repetitive reverse/forwa	ard blocking voltage	$T_{v_J} = 25^{\circ}C$			1300	V
V _{RRM/DRM}	max. repetitive reverse/forward b	locking voltage	$T_{VJ} = 25^{\circ}C$			1200	V
I _{R/D}	reverse current, drain current	$V_{R/D} = 1200 V$	$T_{vJ} = 25^{\circ}C$			100	μA
		$V_{R/D} = 1200 V$	$T_{vJ} = 140^{\circ}C$			10	mA
V _T	forward voltage drop	$I_{T} = 150 \text{ A}$	$T_{VJ} = 25^{\circ}C$			1.29	V
		$I_{T} = 300 \text{ A}$				1.63	V
		I _τ = 150 A	$T_{VJ} = 125 \degree C$			1.28	V
		$I_{T} = 300 \text{ A}$				1.70	V
Ιταν	average forward current	$T_c = 85^{\circ}C$	$T_{vJ} = 140 ^{\circ}\text{C}$			140	A
I _{T(RMS)}	RMS forward current	180° sine				220	A
V _{T0}	threshold voltage		$T_{vJ} = 140 ^{\circ}\text{C}$			0.85	V
r _T	slope resistance } for power i	loss calculation only				2.8	mΩ
R _{thJC}	thermal resistance junction to ca	se				0.22	K/W
R _{thCH}	thermal resistance case to heats	ink			0.2		K/W
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			520	W
I _{TSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{vJ} = 45^{\circ}C$			2.40	kA
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			2.59	kA
		t = 10 ms; (50 Hz), sine	T _{v.i} = 140°C			2.04	kA
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			2.21	kA
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			28.8	kA²s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			27.9	kA²s
		t = 10 ms; (50 Hz), sine	T _{v.i} = 140°C			20.8	kA²s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			20.2	kA²s
C	junction capacitance	$V_{B} = 400 V$ f = 1 MHz	$T_{\rm VJ} = 25^{\circ}\rm C$		119		pF
P _{GM}	max. gate power dissipation	t _P = 30 μs	$T_c = 140$ °C			10	
		$t_{P} = 300 \mu s$	°			5	W
P _{GAV}	average gate power dissipation					0.5	w
(di/dt) _{cr}	critical rate of rise of current	T _{v1} = 140 °C; f = 50 Hz re	epetitive. I _t = 450 A			150	
(,) cr		$t_{\rm P} = 200 \mu {\rm s}; di_{\rm S}/dt = 0.45 {\rm A}/\mu {\rm s}; -100 {\rm s}$, the
		1 1 [,] ^a 1 [,]	on-repet., $I_{\tau} = 150 \text{ A}$			500	A/µs
(dv/dt) _{cr}	critical rate of rise of voltage	$V = \frac{2}{3} V_{\text{DRM}}$	$T_{v_i} = 140^{\circ}C$			1000	i
(av/at/cr		$R_{GK} = \infty$; method 1 (linear volta				1000	ι, μο
V _{gT}	gate trigger voltage	$V_{\rm D} = 6 \text{ V}$	$\frac{190 \text{ Hoc}}{\text{T}_{\text{vJ}} = 25^{\circ}\text{C}}$			1.5	V
♥ GT	gale lingger verlage	v _D = 0 v	$T_{VJ} = -40^{\circ}C$			1.6	v
	gate trigger current	$V_{D} = 6 V$	$T_{VJ} = -40^{\circ} \text{C}$ $T_{VJ} = -25^{\circ} \text{C}$			150	mA
I _{GT}	gale ingger current	$\mathbf{v}_{\mathrm{D}} = 0 \ \mathbf{v}$	$T_{VJ} = -20 \text{ C}$ $T_{VJ} = -40 \text{ C}$				
V	gate non-trigger voltage	$V_{D} = \frac{2}{3} V_{DBM}$	$T_{VJ} = -40^{\circ}C$ $T_{VJ} = 140^{\circ}C$			200 0.2	mA V
V _{gd}		$\mathbf{v}_{\mathrm{D}} = 73 \mathbf{v}_{\mathrm{DRM}}$	$1_{VJ} = 140 \text{ C}$				_
	gate non-trigger current	10	T 0500			10	mA
I.	latching current	$t_p = 10 \ \mu s$	$T_{vJ} = 25 °C$			200	mA
	holding ourset	$I_{\rm G} = 0.45 \text{A}; \text{di}_{\rm G}/\text{dt} = 0.45 \text{A}/\mu\text{s}$				000	A
I _H	holding current	$V_{\rm D} = 6 V R_{\rm GK} = \infty$	$T_{VJ} = 25 \degree C$			200	mA
t _{gd}	gate controlled delay time	$V_{\rm D} = \frac{1}{2} V_{\rm DRM}$	$T_{VJ} = 25 ^{\circ}C$			2	μs
		$I_{\rm G} = 0.45 \text{A}; \text{di}_{\rm G}/\text{dt} = 0.45 \text{A}/\mu\text{s}$					
t _q	turn-off time	$V_{R} = 100 \text{ V}; I_{T} = 150 \text{ A}; \text{ V} = 3$			185		μs
		$di/dt = 10 \text{ A}/\mu \text{s} dv/dt = 20 \text{ V}$	/μs t _p = 200 μs				-

 $\ensuremath{\mathsf{IXYS}}$ reserves the right to change limits, conditions and dimensions.

20191111d

Package TO-240AA				Ratings				
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					200	Α
T _{vj}	virtual junction temperature				-40		140	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		125	°C
Weight						81		g
M _D	mounting torque				2.5		4	Nm
M _T	terminal torque				2.5		4	Nm
d _{Spp/App}	creepage distance on surface striking distance through air		terminal to terminal	13.0	9.7			mm
d _{Spb/Apb}			terminal to backside	16.0	16.0			mm
V	isolation voltage	t = 1 second			4800			V
	t = 1 minute		50/60 Hz, RMS; lıso∟ ≤ 1 mA		4000			V

Part description

 M = Module

 C = Thyristor (SCR)

 M = Thyristor

 A = (up to 1800V)

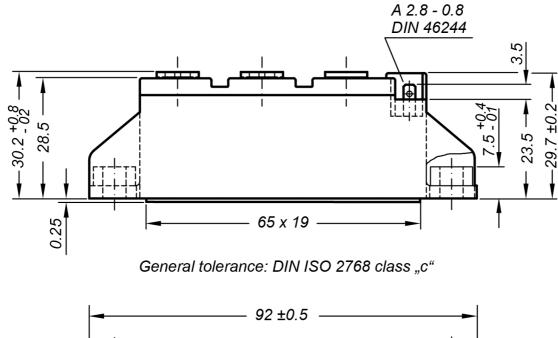
 140 = Current Rating [A]

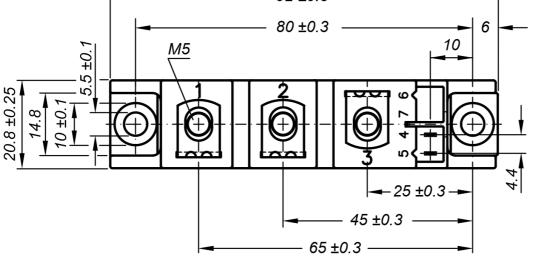
 PD = Phase leg

 1200 = Reverse Voltage [V]

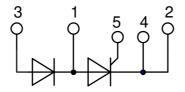
 TB = TO-240AA-1B

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MCMA140PD1200TB	MCMA140PD1200TB	Box	36	512618


Equiva	alent Circuits for	Simulation	* on die level	$T_{VJ} = 140^{\circ}C$
)[R]-	Thyristor		
V _{0 max}	threshold voltage	0.85		V
$\mathbf{R}_{0 \text{ max}}$	slope resistance *	1.6		mΩ


IXYS reserves the right to change limits, conditions and dimensions.

20191111d


Outlines TO-240AA

Optional accessories for modules

Keyed gate/cathode twin plugs with wire length = 350 mm, gate = white, cathode = red Type ZY 200L (L = Left for pin pair 4/5) UL 758, style 3751

20191111d