

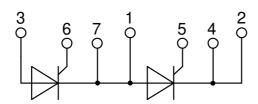
Thyristor Module

 $V_{RRM} = 2x 1600 V$

 $I_{TAV} = 50 A$

 $V_T = 1.17 V$

Phase leg


Part number

MCMA50P1600TA

Backside: isolated

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability
- Direct Copper Bonded Al2O3-ceramic

Applications:

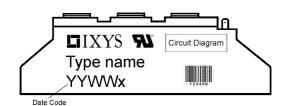
- Line rectifying 50/60 Hz
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

Package: TO-240AA

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.



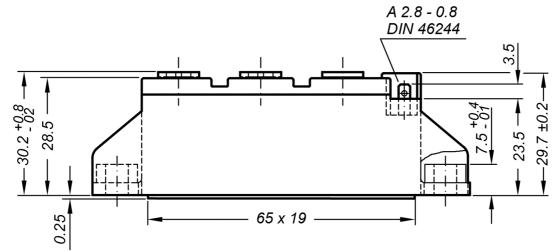
Thyristo		0			Ratings		
Symbol	Definition	Conditions	T 0500	min.	typ.	max.	Un
V _{RSM/DSM}	max. non-repetitive reverse/forwa		$T_{VJ} = 25^{\circ}C$			1700	
V _{RRM/DRM}	max. repetitive reverse/forward bloom		$T_{VJ} = 25^{\circ}C$			1600	'
I _{R/D}	reverse current, drain current	$V_{R/D} = 1600 \text{ V}$	$T_{VJ} = 25^{\circ}C$			100	μ
		$V_{R/D} = 1600 \text{ V}$	$T_{VJ} = 140$ °C			6	m
V _T	forward voltage drop	$I_T = 50 \text{ A}$	$T_{VJ} = 25^{\circ}C$			1.25	,
		I _⊤ = 100 A				1.48	'
		$I_{T} = 50 \text{ A}$	$T_{VJ} = 125$ °C			1.17	,
		$I_{T} = 100 \text{ A}$				1.44	,
I _{TAV}	average forward current	T _C = 85°C	T _{vJ} = 140°C			50	1
I _{T(RMS)}	RMS forward current	180° sine				79	
V _{T0}	threshold voltage		$T_{VJ} = 140$ °C			0.89	,
r _T	slope resistance } for power lo	ess calculation only				5.3	m۵
R _{thJC}	thermal resistance junction to cas	e				0.7	K/V
R _{thCH}	thermal resistance case to heatsin	nk			0.2		K/V
P _{tot}	total power dissipation		T _C = 25°C			160	٧
I _{TSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{V,I} = 45^{\circ}C$			800	,
- 1 3M	<u> </u>	t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			865	
		t = 10 ms; (50 Hz), sine	T _{v,i} = 140°C			680	
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			735	
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			3.20	!
	value for rushing	t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			3.12	l l
		t = 0.5 ms; (60 Hz), sine t = 10 ms; (50 Hz), sine	$V_R = 0 V$ $T_{V,I} = 140 ^{\circ}C$			2.31	kA ²
		• • • • • • • • • • • • • • • • • • • •	• •				į
_	iunation canacitana	t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$		20	2.25	!
C,	junction capacitance	V _R = 400 V f = 1 MHz	$T_{VJ} = 25^{\circ}C$		32	10	pl
P_{GM}	max. gate power dissipation	$t_P = 30 \mu s$	$T_{C} = 140^{\circ}C$			10	۷
_		$t_{P} = 300 \mu s$				5	۷
P _{GAV}	average gate power dissipation					0.5	٧
(di/dt) _{cr}	critical rate of rise of current	$T_{VJ} = 140 ^{\circ}\text{C}; f = 50 \text{Hz}$	•			150	A/μ
	$t_P = 200 \mu\text{s}; di_G/dt = 0.45 A/\mu\text{s};$						
			on-repet., $I_T = 50 A$			500	<u> </u>
$(dv/dt)_{cr}$	critical rate of rise of voltage	$V = \frac{2}{3} V_{DRM}$	$T_{VJ} = 140$ °C			1000	V/µ
		R _{GK} = ∞; method 1 (linear volta	ge rise)				
V _{GT}	gate trigger voltage	$V_D = 6 V$	$T_{VJ} = 25^{\circ}C$			1.5	١
			$T_{VJ} = -40$ °C			1.6	١
I _{GT}	gate trigger current	$V_D = 6 V$	$T_{VJ} = 25^{\circ}C$			78	m
			$T_{VJ} = -40$ °C			200	m/
V _{GD}	gate non-trigger voltage	$V_D = \frac{2}{3} V_{DRM}$	$T_{VJ} = 140^{\circ}C$			0.2	١
I _{GD}	gate non-trigger current					5	m/
I _L	latching current	t _p = 10 μs	$T_{VJ} = 25$ °C			200	m
- 6	-	$I_{\rm G} = 0.45 \text{A}; \text{di}_{\rm G}/\text{dt} = 0.45 \text{A}/\mu \text{s}$					
I _H	holding current	$V_D = 6 \text{ V } R_{GK} = \infty$	$T_{VJ} = 25$ °C			100	m
т _{gd}	gate controlled delay time	$V_{D} = \frac{1}{2} V_{DRM}$	$T_{VJ} = 25 ^{\circ}\text{C}$			2	μ
∙ gd	gato controlled dolay time	$I_{G} = 0.45 \text{ A}; \text{ di}_{G}/\text{dt} = 0.45 \text{ A}/\mu\text{s}$				_	μ
	turn-off time				150		
tq	taiti-on time	$V_R = 100 \text{ V}; I_T = 50 \text{A}; V = \frac{2}{3}$	3 V _{DRM} I _{VJ} = I25 U		150		μ

MCMA50P1600TA

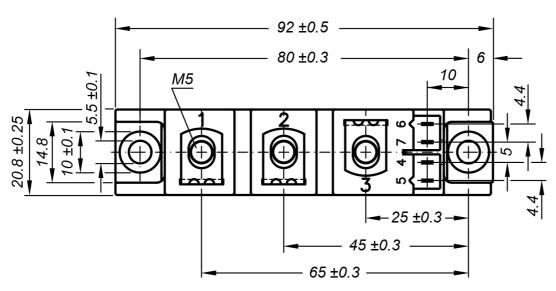
Package	ckage TO-240AA			Ratings				
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					100	Α
T _{VJ}	virtual junction temperature	е			-40		140	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		125	°C
Weight						81		g
M _D	mounting torque				2.5		4	Nm
$\mathbf{M}_{_{T}}$	terminal torque				2.5		4	Nm
d _{Spp/App}		ace striking distance through air	terminal to terminal	13.0	9.7			mm
$d_{Spb/Apb}$	creepage distance on sund	ace Striking distance through an	terminal to backside	16.0	16.0			mm
V _{ISOL}	isolation voltage	t = 1 second	50/00 LL 51/0 L	•	4800			V
.002		t = 1 minute	50/60 Hz, RMS; lisoL ≤ 1 mA		4000			٧

Part description

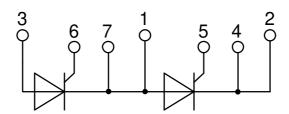
M = Module
C = Thyristor (SCR)
M = Thyristor
A = (up to 1800V)
50 = Current Rating [A]
P = Phase leg 1600 = Reverse Voltage [V]


TA = TO-240AA-1B

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MCMA50P1600TA	MCMA50P1600TA	Box	36	513950


Equiva	lent Circuits for	Simulation	* on die level	$T_{VJ} = 140^{\circ}C$
$I \rightarrow V_0$)—[R _o]-	Thyristor		
V _{0 max}	threshold voltage	0.89		V
$R_{0 max}$	slope resistance *	4.1		$m\Omega$

Outlines TO-240AA



General tolerance: DIN ISO 2768 class "c"

Optional accessories for modules

Keyed gate/cathode twin plugs with wire length = 350 mm, gate = white, cathode = red Type ZY 200L (L = Left for pin pair 4/5) Type ZY 200R (R = Right for pin pair 6/7) UL 758, style 3751

