

MCMA700P1600NCA

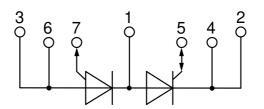
Thyristor Module

= 2x 1600 V

700 A

 V_{T} 1.11 V

Phase leg optional usage as Dual Thyristor Triac


Part number

MCMA700P1600NCA

Backside: isolated

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability
- Direct Copper Bonded Al2O3-ceramic
- Gate current polarities
- upper SCR (2 -> 1) = positive/negative lower SCR (1 -> 3) = negative

Applications:

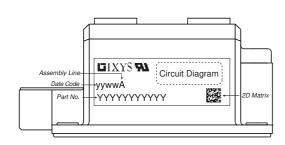
- Line rectifying 50/60 Hz
- Softstart AC motor control
- DC Motor control • Power converter
- AC power control
- Lighting and temperature control

Package: ComPack

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: Copper internally DCB isolated
- Advanced power cycling
- Phase Change Material available

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.


MCMA700P1600NCA

Rectifier					Ratings	3	
Symbol	Definition	Conditions		min.	typ.	max.	Uni
V _{RSM/DSM}	max. non-repetitive reverse/forwar	rd blocking voltage	$T_{VJ} = 25^{\circ}C$			1700	١
$V_{RRM/DRM}$	max. repetitive reverse/forward blo	ocking voltage	$T_{VJ} = 25^{\circ}C$			1600	١
I _{R/D}	reverse current, drain current	$V_{R/D} = 1600 \text{ V}$	$T_{VJ} = 25^{\circ}C$			2	m/
		$V_{R/D} = 1600 \text{ V}$	$T_{VJ} = 125^{\circ}C$			40	m/
V _T	forward voltage drop	I _T = 700 A	$T_{VJ} = 25^{\circ}C$			1.16	١
		I _T =1400 A				1.41	١
		$I_T = 700 \text{ A}$	$T_{VJ} = 125$ °C			1.11	١
		$I_{T} = 1400 \text{ A}$				1.41	١
I _{TAV}	average forward current	$T_C = 85^{\circ}C$	T _{vJ} = 140°C			700	1
I _{T(RMS)}	RMS forward current	180° sine				1100	/
V _{T0}	threshold voltage		T _{vJ} = 140°C			0.82	١
r _T	slope resistance } for power lo	ss calculation only				0.4	mΩ
R _{thJC}	thermal resistance junction to case	9				0.05	K/W
R _{thCH}	thermal resistance case to heatsing				0.02		K/W
P _{tot}	total power dissipation		T _C = 25°C			2300	W
I _{TSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{v,j} = 45^{\circ}C$			19.0	k/
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			20.5	k/
		t = 10 ms; (50 Hz), sine	T _{v.i} = 140°C			16.2	!
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			17.4	k/
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			1.81	MA ² s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			1.75	MA ² s
		t = 10 ms; (50 Hz), sine	T _{vJ} = 140°C				MA ² s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$				MA ² s
C _J	junction capacitance	$V_B = 400 \text{ V}$ f = 1 MHz	$T_{VJ} = 25^{\circ}C$		876		рF
P _{GM}	max. gate power dissipation	t _P = 30 μs	T _C = 140°C			240	W
- GIW	mani gate perier dieespatien	$t_P = 300 \mu s$	O			120	W
P_{GAV}	average gate power dissipation					40	W
(di/dt) _{cr}	critical rate of rise of current	T _{v.i} = 140 °C; f = 50 Hz	repetitive, I _T =2100 A			100	1
(di/dt) _{cr}		$t_P = 200 \mu s; di_G/dt = 1 A/\mu s;$	•				. υμι
		• • • • • • • • • • • • • • • • • • • •	non-repet., $I_{\tau} = 700 \text{ A}$			500	A/μs
(dv/dt) _{cr}	critical rate of rise of voltage	$V = \frac{2}{3} V_{DBM}$	$T_{V,I} = 140^{\circ}C$			1000	<u> </u>
(av/at/cr	childa rate el rice el reliage	$R_{GK} = \infty$; method 1 (linear vol	••			1000	ν /μο
V _{GT}	gate trigger voltage	$V_D = 6 \text{ V}$	$T_{VJ} = 25^{\circ}C$			2	V
▼ GT	gate ingger verlage	V _D = 0 V	$T_{VJ} = -40$ °C			3	V
	gate trigger current	$V_D = 6 V$	$T_{VJ} = -40^{\circ} \text{C}$ $T_{VJ} = 25^{\circ} \text{C}$			± 300	m.A
I _{GT}	gate trigger current	$\mathbf{v}_{D} = \mathbf{o} \ \mathbf{v}$	$T_{VJ} = 23 \text{ C}$ $T_{VJ} = -40 \text{ °C}$			± 400	1
V	gate non-trigger voltage	$V_D = \frac{2}{3} V_{DRM}$	$T_{VJ} = -40^{\circ} \text{C}$ $T_{VJ} = 140^{\circ} \text{C}$			0.25	m <i>A</i> √
V _{GD}	gate non-trigger current	v _D = 73 v _{DRM}	1 _{VJ} = 140 O				1
I _{GD}	<u> </u>		T 05.00			± 10	1
I _L	latching current	$t_p = 30 \mu s$ $I_G = 1 A; di_G/dt = 1 A/I$	$T_{VJ} = 25$ °C us			400	m <i>P</i>
I _H	holding current	$V_D = 6 \text{ V } R_{GK} = \infty$	$T_{VJ} = 25 ^{\circ}\text{C}$			300	m/
t _{gd}	gate controlled delay time	$V_D = \frac{1}{2} V_{DRM}$	$T_{VJ} = 25$ °C			2	με
3~	·	$I_G = 1 A$; $di_G/dt = 1 A/I$					
t _q	turn-off time	$V_R = 100 \text{ V}; \ I_T = 700 \text{A}; \text{V} =$			350		με
-4		$di/dt = 10 \text{ A/}\mu\text{s} \text{ dv/dt} = 50$			300		۳۰

MCMA700P1600NCA

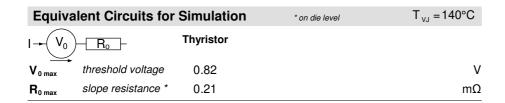
Package ComPack				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal				1200	Α
T _{vJ}	virtual junction temperatur	re		-40		140	°C
Top	operation temperature			-40		125	°C
T _{stg}	storage temperature			-40		125	°C
Weight					500		g
M _D	mounting torque			3		5	Nm
$\mathbf{M}_{_{T}}$	terminal torque			12		14	Nm
d _{Spp/App}	oroonaga diatanaa an aud	face Latriking diatance through air	terminal to terminal	21.0			mm
$d_{Spb/Apb}$	creepage distance on sun	face striking distance through air	terminal to backside	18.0			mm
V _{ISOL}	isolation voltage	t = 1 second	50/60 Hz, RMS; I _{ISOL} ≤ 1 mA	4800			V
.002		t = 1 minute		4000			٧

Part description

M = Module

C = Thyristor (SCR)
M = Thyristor

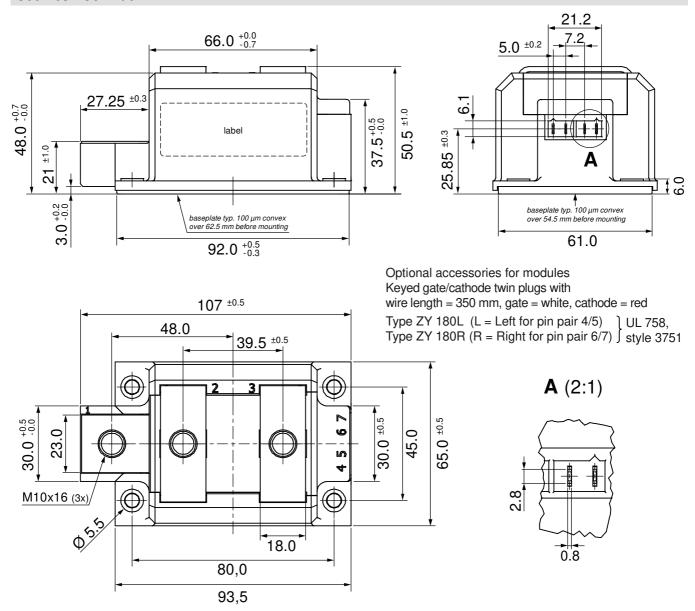
A = (up to 1800V) 700 = Current Rating [A]

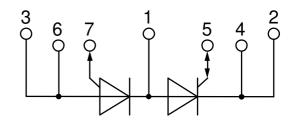

P = Phase leg

1600 = Reverse Voltage [V]

N = Three Quadrants operation: QI - QIII CA = ComPack

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MCMA700P1600NCA	MCMA700P1600NCA	Box	3	515494


Similar Part	Package	Voltage class		
MCMA700P1600CA	ComPack	1600		



Outlines ComPack

