

MDMA1400C1600CC

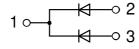
Standard Rectifier Module

 $V_{RRM} = 1600 V$

 $I_{EAV} = 2x 700 A$

 $V_{\rm F} = 1.05 \, \rm V$

Common Cathode


Part number

MDMA1400C1600CC

Backside: isolated

Features / Advantages:

- Package with DCB ceramic
- Improved temperature and power cycling
- Planar passivated chips
- Very low forward voltage drop
- Very low leakage current

Applications:

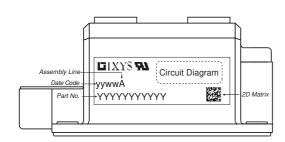
- Diode for main rectification
- For single and three phase bridge configurations
- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Package: ComPack

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Base plate: Copper internally DCB isolated
- Advanced power cycling
- Phase Change Material available

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.


MDMA1400C1600CC

Rectifier					Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit	
V _{RSM}	max. non-repetitive reverse bloc	king voltage	$T_{VJ} = 25^{\circ}C$			1700	V	
V _{RRM}	max. repetitive reverse blocking	voltage	$T_{VJ} = 25^{\circ}C$			1600	V	
I _R	reverse current	V _R = 1600 V	$T_{VJ} = 25^{\circ}C$			500	μΑ	
		$V_R = 1600 \text{ V}$	$T_{VJ} = 150$ °C			20	mΑ	
V _F	forward voltage drop	I _F = 700 A	$T_{VJ} = 25^{\circ}C$			1.14	V	
		$I_F = 1400 \text{ A}$				1.35	٧	
		$I_F = 700 \text{ A}$	T _{VJ} = 125°C			1.05	٧	
		$I_F = 1400 A$				1.30	٧	
I FAV	average forward current	T _C = 100°C	T _{vJ} = 150°C			700	Α	
I _{F(RMS)}	RMS forward current	rectangular d = 0.5				1100	Α	
V _{F0}	threshold voltage		T _{vJ} = 150°C			0.78	٧	
r _F	slope resistance } for power	loss calculation only				0.35	mΩ	
R _{thJC}	thermal resistance junction to ca	ase				0.055	K/W	
R _{thCH}	thermal resistance case to heats	sink			0.02		K/W	
P _{tot}	total power dissipation		$T_{C} = 25^{\circ}C$			2270	W	
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			20.0	kA	
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			21.6	kA	
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 150$ °C			17.0	kA	
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			18.4	kA	
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			2.00	MA ² s	
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			1.94	MA^2s	
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 150$ °C			1.45	MA ² s	
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			1.40	MA ² s	
CJ	junction capacitance	$V_{R} = 400 \text{ V}; f = 1 \text{ MHz}$	$T_{VJ} = 25^{\circ}C$		781		pF	

MDMA1400C1600CC

Package ComPack				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal				1200	Α
T _{VJ}	virtual junction temperature			-40		150	°C
T _{op}	operation temperature			-40		125	°C
T _{stg}	storage temperature			-40		125	°C
Weight					500		g
M _D	mounting torque			3		5	Nm
\mathbf{M}_{T}	terminal torque			12		14	Nm
d _{Spp/App}	araanaga diatanaa an aurfa	an Latriking diatanga through air	terminal to terminal	21.0			mm
$d_{Spb/Apb}$	creepage distance on surra	ce striking distance through air	terminal to backside	18.0			mm
V _{ISOL}	isolation voltage	t = 1 second	50/00 II	4800	4800		V
.002		t = 1 minute	50/60 Hz, RMS; lisoL ≤ 1 mA	4000			٧

Part description

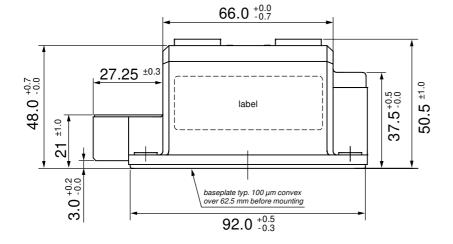
M = Module

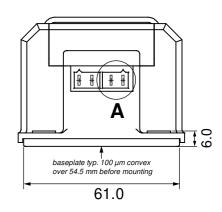
D = Diode
M = Standard Rectifier

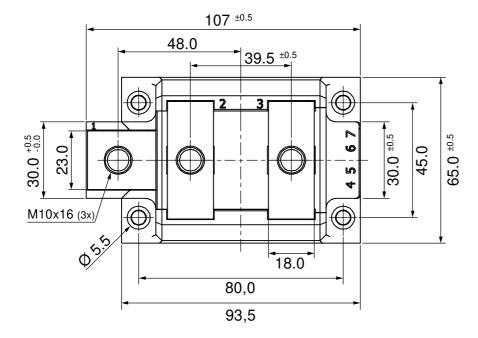
A = (up to 1800V) 1400 = Current Rating [A]

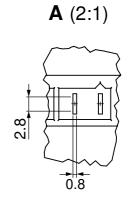
C = Common Cathode 1600 = Reverse Voltage [V]

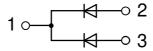
CC = ComPack


Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MDMA1400C1600CC	MDMA1400C1600CC	Box	3	520221


Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 150$ °C
$I \rightarrow V_0$)—[R _o]-	Rectifier		
V _{0 max}	threshold voltage	0.78		V
$R_{0 max}$	slope resistance *	0.16		$m\Omega$






Outlines ComPack

