

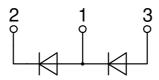
Standard Rectifier Module

 $V_{RRM} = 2x 1600 V$

 $I_{\text{FAV}} = 380 \,\text{A}$

 $V_F = 0.93 V$

Phase leg


Part number

MDMA380P1600KC

Backside: isolated

Features / Advantages:

- Planar passivated chips
- Very low leakage current
 Very low femored veltage disc.
- Very low forward voltage dropImproved thermal behaviour

Applications:

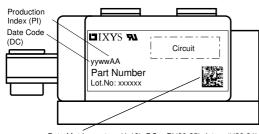
- Diode for main rectification
- For single and three phase bridge configurations
- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Package: Y1

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Base plate: Copper internally DCB isolated
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.



Rectifier			Ratings				
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse bloc	cking voltage	$T_{VJ} = 25^{\circ}C$			1700	V
V _{RRM}	max. repetitive reverse blocking	voltage	$T_{VJ} = 25^{\circ}C$			1600	V
I _R	reverse current	V _R = 1600 V	$T_{VJ} = 25^{\circ}C$			500	μΑ
		$V_R = 1600 \text{ V}$	$T_{VJ} = 150$ °C			20	mΑ
V _F	forward voltage drop	I _F = 300 A	$T_{VJ} = 25^{\circ}C$			1.05	V
		$I_F = 600 A$				1.18	٧
		$I_F = 300 \text{ A}$	T _{VJ} = 125°C			0.93	V
		$I_F = 600 A$				1.10	V
I FAV	average forward current	T _C = 100°C	$T_{VJ} = 150$ °C			380	Α
		rectangular d = 0.5					i 1 1 1
V _{F0}	threshold voltage		T _{VJ} = 150°C			0.75	٧
r _F	slope resistance } for power	loss calculation only				0.53	mΩ
R _{thJC}	thermal resistance junction to ca	ase				0.11	K/W
R _{thCH}	thermal resistance case to heats	sink			0.04		K/W
P _{tot}	total power dissipation		$T_{C} = 25^{\circ}C$			1140	W
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			11.0	kA
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			11.9	kA
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 150$ °C			9.35	kA
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			10.1	kA
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			605.0	kA2s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			587.1	kA2s
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 150$ °C			437.1	kA2s
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			424.4	kA2s
C _J	junction capacitance	$V_{R} = 400 \text{ V}; f = 1 \text{ MHz}$	$T_{VJ} = 25^{\circ}C$		27		pF

MDMA380P1600KC

Package Y1				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal				600	Α
T _{VJ}	virtual junction temperature			-40		150	°C
T _{op}	operation temperature			-40		125	°C
T _{stg}	storage temperature			-40		125	°C
Weight					680		g
M _D	mounting torque			4.5		7	Nm
$\mathbf{M}_{_{T}}$	terminal torque			11		13	Nm
d _{Spp/App}		striking distance through air	terminal to terminal	16.0	16.0		mm
d _{Spb/Apb}	creepage distance on surface	Striking distance through an	terminal to backside	16.0			mm
V _{ISOL}	isolation voltage	t = 1 second	50/60 Hz, RMS; I _{ISOL} ≤ 1 mA	4800			V
.002		t = 1 minute		4000			٧

Data Matrix: part no. (1-19), DC + PI (20-25), lot.no.# (26-31), blank (32), serial no.# (33-36)

Part description

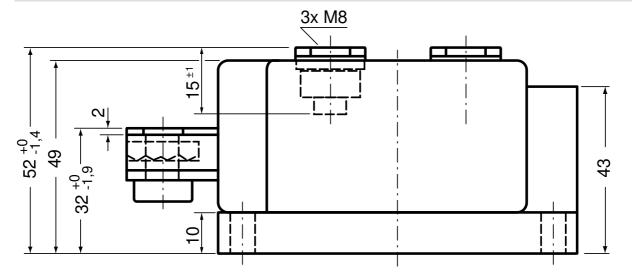
M = Module

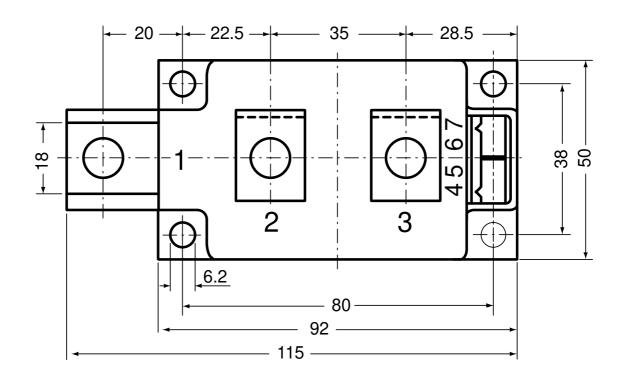
D = Diode M = Standard Rectifier

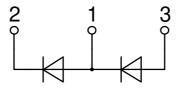
A = (up to 1800V) 380 = Current Rating [A]

P = Phase leg

1600 = Reverse Voltage [V] KC = Y1-CU


Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MDMA380P1600KC	MDMA380P1600KC	Box	3	512611


Similar Part	Package	Voltage class
MDNA380P2200KC	Y1-CU	2200


Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 150^{\circ}C$
$I \rightarrow V_0$)—[R_o_]-	Rectifier		
V _{0 max}	threshold voltage	0.75		V
$R_{0 max}$	slope resistance *	0.34		$m\Omega$

Outlines Y1

