

## **Features**

- High power ratings with higher hold currents at elevated temperatures
- Operating temperature range from -40 °C to 125 °C
- Low thermal derating factor
- Standard 1812 footprint size
- Compliant with AEC-Q200 Rev-D Stress Test Qualification for Passive Components in automotive applications
- Surface mount packaging for automated assembly
- Agency recognition: c sus
- RoHS compliant\*



# **MF-MSHT Series – PTC Resettable Fuses**

#### **Additional Information**

Click these links for more information:













SAMPLES

## **Electrical Characteristics**

|              | V <sub>max</sub> | I <sub>max</sub> | l <sub>hold</sub> | I <sub>trip</sub> | Res                | istance              | Max. Time<br>To Trip |         | Tripped<br>Power<br>Dissipation | Agency Recognition |            | AEC-Q200<br>Compliant |
|--------------|------------------|------------------|-------------------|-------------------|--------------------|----------------------|----------------------|---------|---------------------------------|--------------------|------------|-----------------------|
| Model        | IIIax            | Illax            | at 2:             | 3 °C              |                    | at 23 °C<br>Ohms     |                      | 23 °C   | at 23 °C<br>Watts               | cUL TÜV            |            |                       |
|              | Volts            | Amps             | Am                | nps               | R <sub>Min</sub> . | R <sub>1Max.**</sub> | Amps                 | Seconds | Typical                         | E174545            | R 50384138 |                       |
| MF-MSHT020KX | 42               | 40               | 0.20              | 1.0               | 0.5                | 4.5                  | 8.0                  | 0.1     | 1.2                             | ✓                  | 1          | 1                     |
| MF-MSHT035KX | 36               | 40               | 0.35              | 1.75              | 0.3                | 2.6                  | 8.0                  | 0.1     | 1.2                             | ✓                  | 1          | /                     |
| MF-MSHT050KX | 30               | 40               | 0.50              | 2.5               | 0.18               | 1.6                  | 8.0                  | 0.1     | 1.2                             | ✓                  | 1          | 1                     |
| MF-MSHT075KX | 30               | 40               | 0.75              | 3.75              | 0.09               | 0.85                 | 8.0                  | 5.0     | 1.5                             | ✓                  | 1          | 1                     |
| MF-MSHT110KX | 16               | 40               | 1.10              | 5.5               | 0.05               | 0.45                 | 8.0                  | 5.0     | 1.5                             | ✓                  | 1          | 1                     |
| MF-MSHT125KX | 9                | 40               | 1.25              | 6.25              | 0.03               | 0.30                 | 8.0                  | 5.0     | 1.5                             | ✓                  | pending    | 1                     |
| MF-MSHT150KX | 9                | 40               | 1.50              | 6.0               | 0.022              | 0.20                 | 10.0                 | 5.0     | 1.5                             | 1                  | pending    | 1                     |
| MF-MSHT175KX | 9                | 40               | 1.75              | 7.0               | 0.018              | 0.17                 | 10.0                 | 5.0     | 1.5                             | ✓                  | pending    | ✓                     |

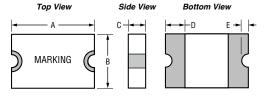
<sup>\*\*</sup>R<sub>1Max.</sub> measured 24 hours post reflow

## **Environmental Characteristics**

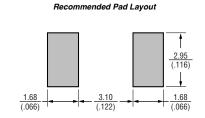
| Item                             | Condition                               | Criteria                                              |
|----------------------------------|-----------------------------------------|-------------------------------------------------------|
| Operating Temperature            | -40 °C to +125 °C                       |                                                       |
| Recommended Storage              | +40 °C max. / 70 % R.H. max.            |                                                       |
| Passive Aging                    | +125 °C, 1000 hours                     | $R < R_{1max}$                                        |
| Humidity Aging                   | +85 °C, 85 % R.H. 1000 hours            | $R < R_{1max}$                                        |
| Thermal Shock                    | -40 °C to +125 °C, 20 times             | $R < R_{1max}$                                        |
| Solvent Resistance               | MIL-STD-202, Method 215                 | No change (marking still legible)                     |
| Vibration                        | MIL-STD-883C, Method 2007.1 Condition A | No change (R <sub>min</sub> < R < R <sub>1max</sub> ) |
| Moisture Sensitivity Level (MSL) | See Note                                |                                                       |
| ESD Classification               | Class 6 (per AEC-Q200-2, HBM)           |                                                       |

## **Test Procedures and Requirements**

| Item              | Test Condition                                            | Accept/Reject Criteria          |
|-------------------|-----------------------------------------------------------|---------------------------------|
| Visual/Mechanical | Verify dimensions and materials                           | Per MF physical description     |
| Resistance        | In still air @ 23 °C                                      | $R_{min} \le R \le R_{max}$     |
| Time to Trip      | At specified current, V <sub>max</sub> , 23 °C, still air | T ≤ max. time to trip (seconds) |
| Hold Current      | 30 min. at I <sub>hold</sub> , still air                  | No trip                         |
| Trip Cycle Life   | V <sub>max</sub> , I <sub>max</sub> , 100 cycles          | No arcing or burning            |
| Trip Endurance    | V <sub>max</sub> , 48 hours                               | No arcing or burning            |
| Solderability     | 245 °C ±5 °C, 5 seconds                                   | 95 % min. coverage              |


## **Applications**

- Overcurrent surge protection of electronic equipment required to operate at high operating temperature ranges
- Robust resettable fault protection for industrial transportation, communication, security, and consumer electronic equipment

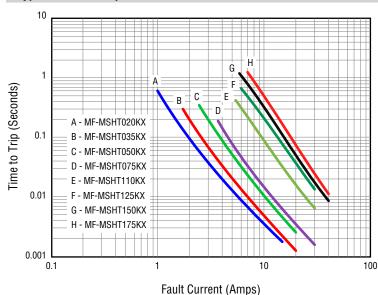

# **MF-MSHT Series – PTC Resettable Fuses**

## **BOURNS**

#### **Product Dimensions**



Terminal Material: ENIG-plated terminals




| Model        |                | A                     | E              | 3              | С                     |                | D                     | E                     |
|--------------|----------------|-----------------------|----------------|----------------|-----------------------|----------------|-----------------------|-----------------------|
| Wodei        | Min.           | Max.                  | Min.           | Max.           | Min.                  | Max.           | Min.                  | Min.                  |
| MF-MSHT020KX |                |                       |                |                |                       |                |                       |                       |
| MF-MSHT035KX | 4.37           | 4.83                  | 3.07           | 3.41           | 0.40                  | 0.85           |                       |                       |
| MF-MSHT050KX | 4.37<br>(.172) | (.190)                | 3.07<br>(.121) | 3.41<br>(.134) | <u>0.40</u><br>(.016) | (.033)         |                       |                       |
| MF-MSHT075KX |                |                       |                |                |                       |                | 0.30                  | 0.05                  |
| MF-MSHT110KX | 4.37<br>(.172) | <u>4.83</u><br>(.190) | 3.07<br>(.121) | 3.41<br>(.134) | <u>0.60</u><br>(.024) | 1.20<br>(.047) | <u>0.30</u><br>(.012) | <u>0.05</u><br>(.002) |
| MF-MSHT125KX |                |                       |                |                |                       |                |                       |                       |
| MF-MSHT150KX | 4.37<br>(.172) | 4.83<br>(.190)        | 3.07<br>(.121) | 3.41<br>(.134) | <u>0.80</u><br>(.031) | 1.60<br>(.063) |                       |                       |
| MF-MSHT175KX |                |                       |                |                |                       |                |                       |                       |

## Thermal Derating Table - Ihold (Amps)

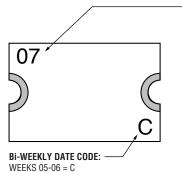
| Model        | Ambient Operating Temperature |        |      |        |        |        |        |        |        |         |
|--------------|-------------------------------|--------|------|--------|--------|--------|--------|--------|--------|---------|
| Wodei        | -40 °C                        | -20 °C | 0 °C | +23 °C | +40 °C | +50 °C | +60 °C | +70 °C | +85 °C | +125 °C |
| MF-MSHT020KX | 0.29                          | 0.26   | 0.23 | 0.20   | 0.18   | 0.16   | 0.15   | 0.13   | 0.11   | 0.05    |
| MF-MSHT035KX | 0.51                          | 0.46   | 0.41 | 0.35   | 0.31   | 0.28   | 0.26   | 0.23   | 0.20   | 0.09    |
| MF-MSHT050KX | 0.73                          | 0.66   | 0.58 | 0.50   | 0.44   | 0.41   | 0.37   | 0.34   | 0.28   | 0.14    |
| MF-MSHT075KX | 1.09                          | 0.98   | 0.87 | 0.75   | 0.66   | 0.61   | 0.56   | 0.50   | 0.42   | 0.20    |
| MF-MSHT110KX | 1.60                          | 1.44   | 1.28 | 1.10   | 0.97   | 0.89   | 0.81   | 0.74   | 0.62   | 0.30    |
| MF-MSHT125KX | 1.81                          | 1.64   | 1.45 | 1.25   | 1.10   | 1.01   | 0.93   | 0.84   | 0.70   | 0.34    |
| MF-MSHT150KX | 2.18                          | 1.97   | 1.74 | 1.50   | 1.32   | 1.22   | 1.11   | 1.01   | 0.84   | 0.41    |
| MF-MSHT175KX | 2.54                          | 2.29   | 2.03 | 1.75   | 1.54   | 1.42   | 1.30   | 1.17   | 0.98   | 0.47    |

## Typical Time to Trip at 23 °C



The Time to Trip curves represent typical performance of a device in a simulated application environment. Actual performance in specific customer applications may differ from these values due to the influence of other variables.

# MF - MSHT 035 K X - 2 Multifuse® Product Designator Series MSHT = 1812 High Temperature Surface Mount Component Hold Current, I<sub>hold</sub> 020 - 175 (0.2 - 1.75 Amps) K = Material Specific Code X = Multifuse® freeXpansion™ Design Packaging


## -2 = Tape and Reel Packaged per EIA-481

#### **Packaging Quantity**

| Model        | <b>Packaging Quantity</b> |
|--------------|---------------------------|
| MF-MSHT020KX | 2,000 pcs. per reel       |
| MF-MSHT035KX | 2,000 pcs. per reel       |
| MF-MSHT050KX | 2,000 pcs. per reel       |
| MF-MSHT075KX | 2,000 pcs. per reel       |
| MF-MSHT110KX | 1,500 pcs. per reel       |
| MF-MSHT125KX | 1,000 pcs. per reel       |
| MF-MSHT150KX | 1,500 pcs. per reel       |
| MF-MSHT175KX | 1,500 pcs. per reel       |

## **Typical Part Marking**

Represents total content. Layout may vary.

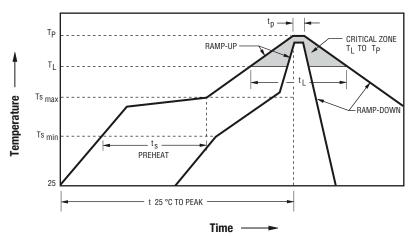


## PART IDENTIFICATION:

MF-MSHT020KX = 02 MF-MSHT035KX = 03 MF-MSHT050KX = 05 MF-MSHT075KX = 07 MF-MSHT110KX = 11 MF-MSHT125KX = 12

MF-MSHT125KX = 12 MF-MSHT150KX = 15

MF-MSHT175KX = 17


Specifications are subject to change without notice.

Users should verify actual device performance in their specific applications.

## **MF-MSHT Series – PTC Resettable Fuses**

## BOURNS

### **Solder Reflow Recommendations**

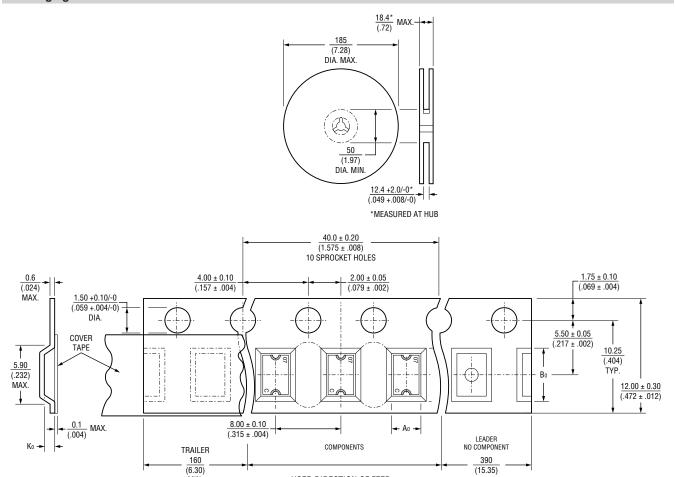


#### Notes:

- MF-MSHT models are intended for reflow soldering (including, but not limited to heating plate, hot air, IR, nitrogen, and vapor phase).
- Wave soldering is permissible only if the device is on the top of the PCB, opposite the heat source.
- · Hand soldering is not recommended for these devices.
- All temperatures refer to the topside of the device, measured on the device body surface.
- If reflow temperatures exceed the recommended profile, devices may not meet the published specifications.
- · Compatible with Pb and Pb-free solder reflow profiles.
- · Excess solder may cause a short circuit.
- Please refer to the <u>Multifuse</u> <u>Polymer PTC Resettable Fuse</u> <u>Soldering Recommendations</u> document for more details.

| Profile Feature                                             | Pb-Free Assembly   |
|-------------------------------------------------------------|--------------------|
| Average Ramp-Up Rate (Ts <sub>max</sub> to T <sub>p</sub> ) | 3 °C / second max. |
| PREHEAT:                                                    |                    |
| Temperature Min. (Ts <sub>min</sub> )                       | 150 °C             |
| Temperature Max. (Ts <sub>max</sub> )                       | 200 °C             |
| Time (Ts <sub>min</sub> to Ts <sub>max</sub> ) (ts)         | 60~180 seconds     |
| TIME MAINTAINED ABOVE:                                      |                    |
| Temperature (T <sub>L</sub> )                               | 217 °C             |
| Time (t <sub>L</sub> )                                      | 60~150 seconds     |
| Peak Temperature (T <sub>p</sub> )                          | 260 °C             |
| Time within 5 °C of Actual Peak Temperature (tp)            | 20~40 seconds      |
| Ramp-Down Rate                                              | 6 °C / second max. |
| Time 25 °C to Peak Temperature                              | 8 minutes max.     |

## BOURNS®


Asia-Pacific: Tel: +886-2 2562-4117 • Email: asiacus@bourns.com

EMEA: Tel: +36 88 885 877 • Email: eurocus@bourns.com

The Americas: Tel: +1-951 781-5500 • Email: americus@bourns.com

www.bourns.com

## **Packaging Dimensions**



| Model                          | <b>A</b> 0                              | Bo                                      | K <sub>0</sub>                          |  |
|--------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--|
| MF-MSHT020KX<br>~ MF-MSHT075KX | $\frac{3.66 \pm 0.15}{(.144 \pm .006)}$ | $\frac{4.98 \pm 0.10}{(.196 \pm .004)}$ | $\frac{0.95 \pm 0.10}{(.037 \pm .004)}$ |  |
| MF-MSHT110KX                   | $\frac{3.58 \pm 0.10}{(.141 \pm .004)}$ | $\frac{4.93 \pm 0.10}{(.194 \pm .004)}$ | $\frac{1.30 \pm 0.10}{(.051 \pm .004)}$ |  |
| MF-MSHT125KX                   | $\frac{3.50 \pm 0.10}{(.138 \pm .004)}$ | $\frac{4.90 \pm 0.10}{(.193 \pm .004)}$ | $\frac{1.80 \pm 0.10}{(.071 \pm .004)}$ |  |
| MF-MSHT150KX<br>~ MF-MSHT175KX | $\frac{3.70 \pm 0.10}{(.146 \pm .004)}$ | $\frac{5.10 \pm 0.10}{(.201 \pm .004)}$ | $\frac{1.50 \pm 0.10}{(.059 \pm .004)}$ |  |

USER DIRECTION OF FEED

MIN.

DIMENSIONS:  $\frac{MM}{(INCHES)}$ 

## **Bourns® Multifuse® PPTC Resettable Fuses**

BOURNS

### **Application Notice**

- Users are responsible for independent and adequate evaluation of Bourns® Multifuse® Polymer PTC devices in the user's application, including the PPTC device characteristics stated in the applicable data sheet.
- Polymer PTC devices must not be allowed to operate beyond their stated maximum ratings. Operation in excess of such
  maximum ratings could result in damage to the PTC device and possibly lead to electrical arcing and/or fire. Circuits with
  inductance may generate a voltage above the rated voltage of the polymer PTC device and should be thoroughly evaluated
  within the user's application during the PTC selection and qualification process.
- Polymer PTC devices are intended to protect against adverse effects of temporary overcurrent or overtemperature
  conditions up to rated limits and are not intended to serve as protective devices where overcurrent or overvoltage conditions
  are expected to be repetitive or prolonged.
- In normal operation, polymer PTC devices experience thermal expansion under fault conditions. Thus, a polymer PTC
  device must be protected against mechanical stress, and must be given adequate clearance within the user's application to
  accommodate such thermal expansion. Rigid potting materials or fixed housings or coverings that do not provide adequate
  clearance should be thoroughly examined and tested by the user, as they may result in the malfunction of polymer PTC
  devices if the thermal expansion is inhibited.
- Exposure to lubricants, silicon-based oils, solvents, gels, electrolytes, acids, and other related or similar materials may adversely affect the performance of polymer PTC devices.
- Aggressive solvents may adversely affect the performance of polymer PTC devices. Conformal coating, encapsulating, potting, molding, and sealing materials may contain aggressive solvents including but not limited to xylene and toluene, which are known to cause adverse effects on the performance of polymer PTCs. Such aggressive solvents must be thoroughly cured or baked to ensure their complete removal from polymer PTCs to minimize the possible adverse effect on the device.
- Recommended storage conditions should be followed at all times. Such conditions can be found on the applicable data sheet and on the Multifuse® Polymer PTC Moisture/Reflow Sensitivity Classification (MSL) note: https://www.bourns.com/docs/RoHS-MSL/msl\_mf.pdf