

Features

- Surface mount packaging for automated assembly
- Small footprint size (1206) and low profile for space-constrained mobile applications
- Ultra-low resistance
- Utilizes innovative freeXpansion[™] design
- RoHS compliant* and halogen free**

Applications

- Thermal protection for Li-ion & polymer battery packs
- Power delivery port protection
- USB port protection
- PC motherboards Plug & Play protection
- Mobile phones Battery & charging protection
- Game console port protection

MF-NSML/X Series - Low Ohmic PTC Resettable Fuses

Electrical Characteristics

	V max.	I max. Amps	l _{hold}	I _{trip}	Resistance		Max. Time To Trip		Tripped Power Dissipation
Model	Volts		Amperes at 23 °C		Ohms at 23 °C		Amperes at 23 °C	Seconds at 23 °C	Watts at 23 °C
			Hold	Trip	R _{Min} .	R _{1Max.}			Тур.
MF-NSML150/12	12	50	1.50	3.00	0.010	0.065	8.00	5.00	1.00
MF-NSML175/12	12	50	1.75	3.50	0.006	0.050	8.00	5.00	1.00
MF-NSML200/12	12	50	2.00	4.00	0.005	0.040	8.00	5.00	1.00
MF-NSML260/12	12	50	2.60	5.20	0.004	0.030	8.00	5.00	1.00
MF-NSML300/12	12	50	3.00	6.00	0.003	0.024	8.00	5.00	1.00
MF-NSML350/12	12	50	3.50	7.00	0.002	0.022	8.00	5.00	1.00
MF-NSML380/12	12	50	3.80	7.60	0.002	0.020	8.00	5.00	1.00
MF-NSML400/12	12	50	4.00	8.00	0.002	0.018	10.0	5.00	1.00
MF-NSML450/12	12	50	4.50	9.00	0.002	0.014	22.5	2.00	1.00

Environmental Characteristics

Operating TemperatureStorage Condition	40 °C to +85 °C	
Before Opening	+40 °C max. / 70 % RH max.	
After Opening	+40 °C max. / 10 % RH max.	
Floor Condition After Opening	Consumption within 4 weeks at floor condition +	30 °C max. / 60 % RH max.
Passive Aging	+85 °C, 1000 hours	±10 % typical resistance change
Humidity Aging	+85 °C, 85 % R.H. 100 hours	±15 % typical resistance change
	+85 °C to -40 °C, 20 times	
Solvent Resistance	MIL-STD-202, Method 215	No change (marking still legible)
Vibration	MIL-STD-883C, Method 2007.1,	No change (R _{min} <r<r<sub>1max)</r<r<sub>
	Condition A	o (IIIII IIIIax)
Moisture Sensitivity Level (MSL)	See Note	
ESD Classification - HBM	6	

Test Procedures and Requirements

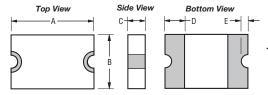
Test	Test Conditions	Accept/Reject Criteria
Visual/Mech	Verify dimensions and materials	Per MF physical description
Resistance	In still air @ 23 °C	$R_{min} \leq R \leq R_{1max}$
Time to Trip	In still air @ 23 °C	T ≤ max. time to trip (seconds)
Hold Current	30 min. at I _{hold}	No trip
Trip Cycle Life	V _{max} , I _{max} , 100 cycles	No arcing or burning
Trip Endurance	V _{max} , I _{max} , 100 cyclesV _{max} , 48 hours	No arcing or burning
Solderability	245°C ±5 °C, 5 seconds	95 % min. coverage
	E174545	
cUL File Number	E1/4545	

WARNING Cancer and Reproductive Harm - www.P65Warnings.ca.gov

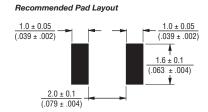
- * RoHS Directive 2015/863, Mar 31, 2015 and Annex.
- ** Bourns considers a product to be "halogen free" if (a) the Bromine (Br) content is 900 ppm or less; (b) the Chlorine (Cl) content is 900 ppm or less; and (c) the total Bromine (Br) and Chlorine (Cl) content is 1500 ppm or less.

Specifications are subject to change without notice.

Users should verify actual device performance in their specific applications.


MF-NSML/X Series - Low Ohmic PTC Resettable Fuses

BOURNS


Product Dimensions

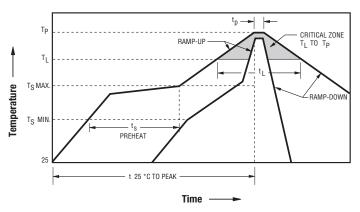
Model	Α		В		С		D	E	
Wodei	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Min.	Max.
MF-NSML150/12 MF-NSML175/12 MF-NSML200/12	3.00 (0.118)	3.50 (0.138)	1.40 (0.055)	1.80 (0.071)	<u>0.40</u> (0.016)	0.70 (0.028)	0.25 (0.010)	<u>0.05</u> (0.002)	0.45 (0.018)
MF-NSML260/12	3.00 (0.118)	3.50 (0.138)	1.40 (0.055)	1.80 (0.071)	0.40 (0.016)	1.00 (0.039)	<u>0.25</u> (0.010)	0.05 (0.002)	0.45 (0.018)
MF-NSML300/12 MF-NSML350/12	3.00 (0.118)	3.50 (0.138)	1.40 (0.055)	1.80 (0.071)	<u>0.40</u> (0.016)	1.40 (0.055)	<u>0.25</u> (0.010)	<u>0.05</u> (0.002)	0.45 (0.018)
MF-NSML380/12 MF-NSML400/12 MF-NSML450/12	3.00 (0.118)	3.50 (0.138)	1.40 (0.055)	1.80 (0.071)	0.60 (0.024)	1.40 (0.055)	<u>0.25</u> (0.010)	<u>0.05</u> (0.002)	0.45 (0.018)

DIMENSIONS: $\frac{MM}{(INCHES)}$

Terminal material: ENIG-plated terminals

Packaging Quantity

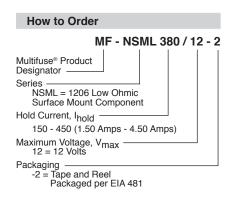
MF-NSML150/12~MF-NSML260/12 = 5000 pcs. per reel MF-NSML300/12~MF-NSML450/12 = 3500 pcs. per reel


Thermal Derating Table - Ihold (Amps)

Model	Ambient Operating Temperature										
wodei	-40 °C	-20 °C	0 °C	23 °C	40 °C	50 °C	60 °C	70 °C	85 °C		
MF-NSML150/12	2.20	2.00	1.77	1.50	1.28	1.15	1.07	0.85	0.70		
MF-NSML175/12	2.57	2.33	2.07	1.75	1.49	1.34	1.24	1.00	0.80		
MF-NSML200/12	2.94	2.65	2.35	2.00	1.70	1.53	1.42	1.14	0.93		
MF-NSML260/12	3.82	3.46	3.07	2.60	2.21	1.95	1.85	1.48	1.20		
MF-NSML300/12	4.41	3.99	3.54	3.00	2.55	2.32	2.13	1.71	1.38		
MF-NSML350/12	5.25	4.66	4.13	3.50	2.98	2.71	2.49	2.00	1.65		
MF-NSML380/12	5.59	5.05	4.48	3.80	3.23	2.95	2.60	2.15	1.75		
MF-NSML400/12	5.80	5.25	4.65	4.00	3.40	3.10	2.65	2.20	1.80		
MF-NSML450/12	6.10	5.40	4.70	4.50	3.60	3.15	2.70	2.25	1.85		

MF-NSML/X Series - Low Ohmic PTC Resettable Fuses

BOURNS


Solder Reflow Recommendations

Notes:

- MF-NSML/X models cannot be wave soldered or hand soldered.
 Please contact Bourns for soldering recommendations.
- All temperatures refer to topside of the package, measured on the package body surface.
- If reflow temperatures exceed the recommended profile, devices may not meet the published specifications.
- · Compatible with Pb and Pb-free solder reflow profiles.
- Excess solder may cause a short circuit, especially during hand soldering. Please refer to the Multifuse® Polymer PTC Soldering Recommendation guidelines.
- Designed for single solder reflow operations.

Profile Feature	Pb-Free Assembly				
Average Ramp-Up Rate (Ts _{max} to T _p)	3 °C / second max.				
PREHEAT:					
Temperature Min. (Ts _{min})	150 °C				
Temperature Max. (Ts _{max})	200 °C				
Time (Ts _{min} to Ts _{max}) (ts)	60~180 seconds				
TIME MAINTAINED ABOVE:					
Temperature (T _L)	217 °C				
Time (t _L)	60~150 seconds				
Peak Temperature (T _p)	260 °C				
Time within 5 °C of Actual Peak Temperature (tp)	20~40 seconds				
Ramp-Down Rate	6 °C / second max.				
Time 25 °C to Peak Temperature	8 minutes max.				

Typical Part Marking Represents total content. Layout may vary. PART IDENTIFICATION: MF-NSML150/12 = G12 MF-NSML175/12 = H12 MF-NSML200/12 = J12 MF-NSML200/12 = J12 MF-NSML300/12 = P12 MF-NSML300/12 = P12 MF-NSML300/12 = S12 MF-NSML400/12 = U12 MF-NSML400/12 = U12 MF-NSML450/12 = X12 MANUFACTURING DATE CODE IS

LOCATED ON PACKING LABEL.

BOURNS®

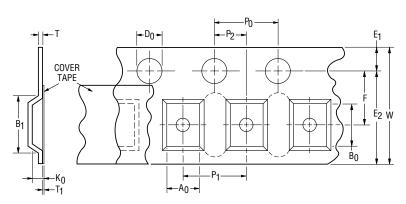
Asia-Pacific:

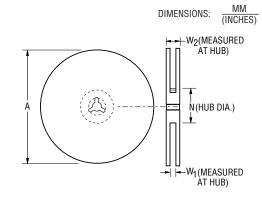
Tel: +886-2 2562-4117 Email: asiacus@bourns.com

Europe:

Tel: +36 88 520 390 Email: eurocus@bourns.com

The Americas:


Tel: +1-951 781-5500


Email: americus@bourns.com

www.bourns.com

MF-NSML/X Series Tape and Reel Specifications

	MF-NSML/X Series
Tape Dimensions	per EIA 481
W	12.0 ± 0.30
<u> </u>	(0.472 ± 0.012)
P_0	4.0 ± 0.10
	(0.157 ± 0.004)
P ₁	$\frac{4.0 \pm 0.10}{(0.457 \pm 0.004)}$
	(0.157 ± 0.004)
P_2	$\frac{2.0 \pm 0.05}{(0.079 \pm 0.002)}$
	(0.073 ± 0.002) 1.90 ± 0.10
A_0	$\frac{1.30 \pm 0.10}{(0.075 \pm 0.004)}$
	3.50 ± 0.10
B_0	$\frac{0.005 \pm 0.004}{(0.138 \pm 0.004)}$
D. may	4.5
B ₁ max.	(0.177)
D_0	1.5 + 0.10/-0.0
	$\overline{(0.059 + 0.004/-0)}$
F	5.5 ± 0.05
	(0.216 + 0.002)
E ₁	1.75 ± 0.10
-1	(0.069 ± 0.004)
E ₂ typ.	10.25
	(0.404)
T max.	$\frac{0.6}{(0.024)}$
	0.1
T ₁ max.	$\frac{0.1}{(0.004)}$
	0.65 ± 0.10
K ₀ (MF-NSML150/12~MF-NSML260/12)	$\frac{0.03 \pm 0.10}{(0.026 \pm 0.004)}$
IZ (ME NOMEOCOMO ME NOME 450/40)	1.10 ± 0.10
K ₀ (MF-NSML300/12~MF-NSML450/12)	(0.043 ± 0.004)
Leader min.	_ 390_
Leader Hill.	(15.35)
Trailer min.	<u>160</u> (6.30)
Reel Dimensions	(0.00)
A max.	<u>185</u> (7.283)
N min.	50
IN THIEL.	(1.97)
W_1	$\frac{12.4 + 1/-0}{(0.488 + 0.039/-0)}$
	15.4
W ₂ max.	(0.606)

Bourns® Multifuse® PPTC Resettable Fuses

BOURNS

Application Notice

- Users are responsible for independent and adequate evaluation of Bourns® Multifuse® Polymer PTC devices in the user's application, including the PPTC device characteristics stated in the applicable data sheet.
- Polymer PTC devices must not be allowed to operate beyond their stated maximum ratings. Operation in excess of such
 maximum ratings could result in damage to the PTC device and possibly lead to electrical arcing and/or fire. Circuits with
 inductance may generate a voltage above the rated voltage of the polymer PTC device and should be thoroughly evaluated
 within the user's application during the PTC selection and qualification process.
- Polymer PTC devices are intended to protect against adverse effects of temporary overcurrent or overtemperature
 conditions up to rated limits and are not intended to serve as protective devices where overcurrent or overvoltage conditions
 are expected to be repetitive or prolonged.
- In normal operation, polymer PTC devices experience thermal expansion under fault conditions. Thus, a polymer PTC
 device must be protected against mechanical stress, and must be given adequate clearance within the user's application to
 accommodate such thermal expansion. Rigid potting materials or fixed housings or coverings that do not provide adequate
 clearance should be thoroughly examined and tested by the user, as they may result in the malfunction of polymer PTC
 devices if the thermal expansion is inhibited.
- Exposure to lubricants, silicon-based oils, solvents, gels, electrolytes, acids, and other related or similar materials may adversely affect the performance of polymer PTC devices.
- Aggressive solvents may adversely affect the performance of polymer PTC devices. Conformal coating, encapsulating, potting, molding, and sealing materials may contain aggressive solvents including but not limited to xylene and toluene, which are known to cause adverse effects on the performance of polymer PTCs. Such aggressive solvents must be thoroughly cured or baked to ensure their complete removal from polymer PTCs to minimize the possible adverse effect on the device.
- Recommended storage conditions should be followed at all times. Such conditions can be found on the applicable data sheet and on the Multifuse® Polymer PTC Moisture/Reflow Sensitivity Classification (MSL) note: https://www.bourns.com/docs/RoHS-MSL/msl_mf.pdf