

Features

- Compact design to save board space -0805 footprint
- Small size results in very fast time to react to fault events
- Symmetrical design
- Low profile

Applications

- USB port protection USB 2.0, 3.0 & OTG
- HDMI 1.4 Source protection
- PC motherboards Plug and Play protection
- Mobile phones Battery and port protection
- PDAs / digital cameras
- Game console port protection

MF-PSMF Series – PTC Resettable Fuses

Electrical Characteristics

	V _{max}	I _{max}	l _{hold}	l _{trip}	Resis	tance	Max. Time to Trip		Tripped Agenc Power Dissipation Recognit		
Model	max	IIIux	at 2:	3°C		at 23 °C at 23 °C		23 °C	at 23 °C Watts	cUL	ΤÜV
	Volts	Amps	Am	ıps	R _{min}	R _{1max}	Amps	Seconds	Тур.	E174545	R50256634
MF-PSMF010X	15	40	0.10	0.30	1.0	7.5	0.5	1.5	0.5	✓	1
MF-PSMF010/24X	24	80	0.10	0.30	1.0	7.5	0.5	1.5	0.5	✓	
MF-PSMF020X	9	40	0.20	0.50	0.65	3.5	8.0	0.02	0.5	✓	/
MF-PSMF035X	6	40	0.35	0.75	0.25	1.2	8.0	0.1	0.5	✓	1
MF-PSMF050X	6	40	0.50	1.00	0.15	0.9	8.0	0.1	0.5	✓	✓
MF-PSMF075X	6	40	0.75	1.50	0.09	0.35	8.0	0.2	0.6	✓	1
MF-PSMF110X	6	40	1.10	2.20	0.06	0.21	8.0	0.3	0.6	✓	1

Environmental Characteristics

Item	Condition	Criteria
Operating Temperature	-40 °C to +85 °C	
Recommended Storage	+40 °C max. / 70 % R.H. max.	
Passive Aging	+85 °C, 1000 hours	±5 % typical resistance change
Humidity Aging	+85 °C, 85 % R.H. 1000 hours	±5 % typical resistance change
Thermal Shock	-40 °C to +85 °C, 20 times	±10 % typical resistance change
Solvent Resistance	MIL-STD-202, Method 215	No change (marking still legible)
Vibration	MIL-STD-883C, Method 2007.1 Condition A	No change (R _{min} < R < R _{1max})
Moisture Sensitivity Level (MSL)	See Note	
ESD Classification	Class 6 (per AEC-Q200-2, HBM)	

Additional Information

Click these links for more information:

PRODUCT TECHNICAL INVENTORY SAMPLES SELECTOR LIBRARY

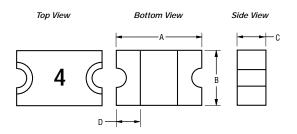
Test Procedures and Requirements

Item	Test Condition	Accept/Reject Criteria
Visual/Mechanical	Verify dimensions and materials	Per MF physical description
Resistance	In still air @ 23 °C	$R_{min} \le R \le R_{max}$
Time to Trip	At specified current, V _{max} , 23 °C, still air	T ≤ max. time to trip (seconds)
Hold Current	30 min. at Ihold, still air	No trip
Trip Cycle Life	V _{max} , I _{max} , 100 cycles	No arcing or burning
Trip Endurance	V _{max} , I _{max} , 48 hours	No arcing or burning
Solderability	245 °C ±5 °C, 5 seconds	95 % min. coverage

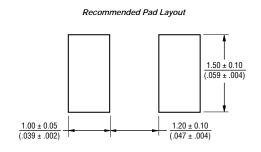
Bourns considers a product to be "halogen free" if (a) the Bromine (Br) content is 900 ppm or less; (b) the Chlorine (Cl) content is 900 ppm or less; and (c) the total Bromine (Br) and Chlorine (Cl) content is 1500 ppm or less. Specifications are subject to change without notice. Users should verify actual device performance in their specific applications. The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.

^{*} RoHS Directive 2015/863, Mar 31, 2015 and Annex.

MF-PSMF Series – PTC Resettable Fuses


Thermal Derating Table - Ihold (Amps)

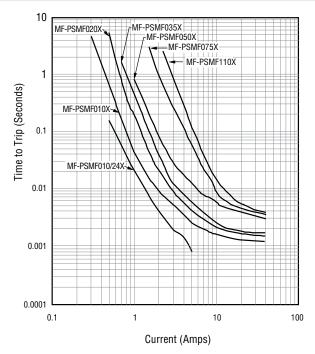
Model	Ambient Operating Temperature									
Wodei	-40 °C	-20 °C	0 °C	23 °C	40 °C	50 °C	60 °C	70 °C	85 °C	
MF-PSMF010X	0.15	0.13	0.12	0.10	0.09	0.08	0.07	0.06	0.05	
MF-PSMF010/24X	0.15	0.13	0.12	0.10	0.09	0.08	0.07	0.06	0.05	
MF-PSMF020X	0.28	0.25	0.23	0.20	0.17	0.14	0.12	0.10	0.07	
MF-PSMF035X	0.47	0.44	0.39	0.35	0.30	0.27	0.24	0.20	0.14	
MF-PSMF050X	0.68	0.62	0.55	0.50	0.40	0.37	0.33	0.29	0.23	
MF-PSMF075X	1.00	0.90	0.79	0.75	0.63	0.57	0.53	0.42	0.35	
MF-PSMF110X	1.45	1.35	1.20	1.10	0.92	0.84	0.75	0.65	0.52	


Product Dimensions

Madal		A	ı	3		D	
Model	Min.	Max.	Min.	Max.	Min.	Max.	Min.
MF-PSMF010X	2.00	2.30	1.20	1.50	<u>0.48</u>	<u>0.85</u>	<u>0.20</u>
	(0.079)	(0.091)	(0.047)	(0.059)	(0.019)	(0.033)	(0.008)
MF-PSMF010/24X	2.00	2.30	1.20	1.50	<u>0.48</u>	<u>0.85</u>	<u>0.20</u>
	(0.079)	(0.091)	(0.047)	(0.059)	(0.019)	(0.033)	(0.008)
MF-PSMF020X	2.00	2.30	1.20	1.50	<u>0.48</u>	<u>0.85</u>	<u>0.20</u>
	(0.079)	(0.091)	(0.047)	(0.059)	(0.019)	(0.033)	(0.008)
MF-PSMF035X	2.00	2.30	1.20	1.50	<u>0.48</u>	<u>0.85</u>	<u>0.20</u>
	(0.079)	(0.091)	(0.047)	(0.059)	(0.019)	(0.033)	(0.008)
MF-PSMF050X	<u>2.00</u>	2.30	1.20	1.50	<u>0.48</u>	<u>0.85</u>	<u>0.20</u>
	(0.079)	(0.091)	(0.047)	(0.059)	(0.019)	(0.033)	(0.008)
MF-PSMF075X	2.00	2.30	1.20	1.50	<u>0.75</u>	1.25	0.20
	(0.079)	(0.091)	(0.047)	(0.059)	(0.030)	(0.049)	(0.008)
MF-PSMF110X	2.00	2.30	1.20	1.50	<u>0.75</u>	1.25	<u>0.20</u>
	(0.079)	(0.091)	(0.047)	(0.059)	(0.030)	(0.049)	(0.008)

 $\frac{\text{MM}}{(\text{INCHES})}$ DIMENSIONS:

Terminal material: Nickel/gold plated

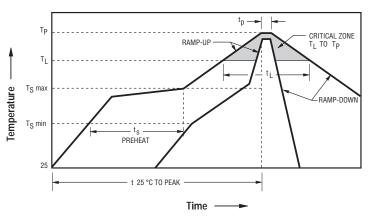


MF-PSMF Series – PTC Resettable Fuses

Packaging Specifications

3000 pcs. per reel

Typical Time to Trip at 23 °C



The Time to Trip curves represent typical performance of a device in a simulated application environment. Actual performance in specific customer applications may differ from these values due to the influence of other variables.

MF-PSMF Series – PTC Resettable Fuses

BOURNS

Solder Reflow Recommendations

Notes:

- MF-PSMF models are intended for reflow soldering (including but not limited to heating plate, hot air, IR, nitrogen, and vapor phase).
- Wave soldering is permissible only if the device is on the top of the PCB, opposite the heat source.
- Hand soldering is not recommended for these devices.
- All temperatures refer to the topside of the device, measured on the device body surface.
- If reflow temperatures exceed the recommended profile, devices may not meet the published specifications.
- Compatible with Pb and Pb-free solder reflow profiles.
- Excess solder may cause a short circuit.
- Please refer to the <u>Multifuse® Polymer PTC Resettable Fuse Soldering Recommendations</u> for more details.

Profile Feature	Pb-Free Assembly		
Average Ramp-Up Rate (T _S max to T _p)	3 °C / second max.		
PREHEAT:			
Temperature Min. (T _S min)	150 °C		
Temperature Max. (TS max)	200 °C		
Time (TS min to TS max) (ts)	60~180 seconds		
TIME MAINTAINED ABOVE:			
Temperature (T _L)	217 °C		
Time (t _L)	60~150 seconds		
Peak Temperature (T _P)	260 °C		
Time within 5 °C of Actual Peak Temperature (t _p)	20~40 seconds		
Ramp-Down Rate	6 °C / second max.		
Time 25 °C to Peak Temperature	8 minutes max.		

MF - PSMF 010 /24 X - 2 Multifuse® Product Designator Series PSMF = 0805 Surface Mount Component Hold Current, Ihold 010-110 (0.10 - 1.10 Amps) Higher Voltage Option Blank = Standard Voltage /24 = 24 V Multifuse® freeXpansion™ Design Packaging -2 = Tape and Reel Packaged per EIA-481

Typical Part Marking

Represents total content. Layout may vary.

BIWEEKLY DATE CODE WILL APPEAR ON THE PACKAGING LABEL: WEEK 1 AND 2 = A WEEK 51 AND 52 = Z PART IDENTIFICATION: MF-PSMF010X = 1 MF-PSMF010/24X = 1 MF-PSMF020X = 2 MF-PSMF035X = 3 MF-PSMF050X = 4 MF-PSMF075X = 5 MF-PSMF110X = 6

BOURNS®

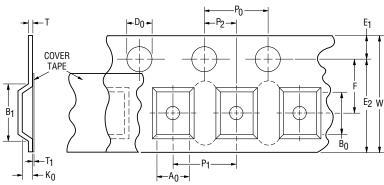
Asia-Pacific:

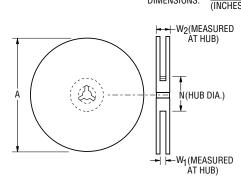
Tel: +886-2 2562-4117 Email: asiacus@bourns.com

Europe:

Tel: +36 88 885 877

Email: eurocus@bourns.com


The Americas:


Tel: +1-951 781-5500

Email: americus@bourns.com

www.bourns.com

MF-PSMF Series Tape and Reel Specifications	BOURNS ®
Tape Dimensions	MF-PSMF Series per EIA-481
•	8.0 ± 0.30
W	$\frac{0.0 \pm 0.000}{(0.315 \pm 0.012)}$
P_0	4.0 ± 0.10
'U	(0.157 ± 0.004)
10P ₀	$\frac{40 \pm 0.20}{(1.575 \pm 0.008)}$
	4.0 ± 0.10
P ₁	$\frac{10.157 \pm 0.004}{10.157 \pm 0.004}$
P_2	2.0 ± 0.05
<u> </u>	(0.079 ± 0.002)
A_0	$\frac{1.70 \pm 0.10}{(0.067 \pm 0.004)}$
	$\frac{(0.067 \pm 0.004)}{2.45 \pm 0.10}$
B_0	$\frac{2.43 \pm 0.10}{(0.096 \pm 0.004)}$
P. mov	4.35
B ₁ max.	(0.171)
D_0	1.5 + 0.10/-0.0
	$\frac{(0.059 + 0.004/-0)}{3.5 \pm 0.05}$
F	$\frac{3.5 \pm 0.05}{(0.138 \pm 0.002)}$
	1.75 ± 0.10
E ₁	(0.069 ± 0.004)
E ₂ min.	$\frac{6.25}{(0.246)}$
	0.6
T max.	(0.024)
T ₁ max.	$\frac{0.1}{(0.004)}$
Κ ₀	0.95 ± 0.10
<u> </u>	(0.037 ± 0.004)
Leader min.	<u>390</u> (15.35)
	160
Trailer min.	(6.30)
Reel Dimensions	
A max.	<u>185</u> (7.28)
N min.	50 (1.97)
W ₁	8.4 + 1.5/-0.0
···I	(0.331 + 0.059/-0.0
W ₂ max.	$\frac{14.4}{(0.567)}$
 P ₀	DIMENSIONS: $\frac{MM}{(INCHES)}$
	I I Wo/MEASURED

MF-PSMF SERIES, REV. P 04/20

Bourns® Multifuse® PPTC Resettable Fuses

BOURNS

Application Notice

- Users are responsible for independent and adequate evaluation of Bourns® Multifuse® Polymer PTC devices in the user's application, including the PPTC device characteristics stated in the applicable data sheet.
- Polymer PTC devices must not be allowed to operate beyond their stated maximum ratings. Operation in excess of such
 maximum ratings could result in damage to the PTC device and possibly lead to electrical arcing and/or fire. Circuits with
 inductance may generate a voltage above the rated voltage of the polymer PTC device and should be thoroughly evaluated
 within the user's application during the PTC selection and qualification process.
- Polymer PTC devices are intended to protect against adverse effects of temporary overcurrent or overtemperature
 conditions up to rated limits and are not intended to serve as protective devices where overcurrent or overvoltage conditions
 are expected to be repetitive or prolonged.
- In normal operation, polymer PTC devices experience thermal expansion under fault conditions. Thus, a polymer PTC
 device must be protected against mechanical stress, and must be given adequate clearance within the user's application to
 accommodate such thermal expansion. Rigid potting materials or fixed housings or coverings that do not provide adequate
 clearance should be thoroughly examined and tested by the user, as they may result in the malfunction of polymer PTC
 devices if the thermal expansion is inhibited.
- Exposure to lubricants, silicon-based oils, solvents, gels, electrolytes, acids, and other related or similar materials may adversely affect the performance of polymer PTC devices.
- Aggressive solvents may adversely affect the performance of polymer PTC devices. Conformal coating, encapsulating, potting, molding, and sealing materials may contain aggressive solvents including but not limited to xylene and toluene, which are known to cause adverse effects on the performance of polymer PTCs. Such aggressive solvents must be thoroughly cured or baked to ensure their complete removal from polymer PTCs to minimize the possible adverse effect on the device.
- Recommended storage conditions should be followed at all times. Such conditions can be found on the applicable data sheet and on the Multifuse® Polymer PTC Moisture/Reflow Sensitivity Classification (MSL) note: https://www.bourns.com/docs/RoHS-MSL/msl_mf.pdf