

Features

- Radial leaded devices
- Cured, flame retardant epoxy polymer insulating material meets UL 94V-0 requirements
- RoHS compliant* and halogen free*

MF-R/90 Series - PTC Resettable Fuses

Electrical Characteristics

Model	V max. Volts	I max.	l _{hold}	I _{trip}	Resis	tial tance ues	One Hour Post-Trip Resistance Standard Trip	Max. Time to Trip		Nominal Tripped Power Dissipation	Agency	Recognition
		Amps	Amperes at 23 °C		Ohms at 23 °C		Ohms at 23 °C	Amperes at 23 °C	Seconds at 23 °C	Watts at 23 °C	cUL	ΤÜV
			Hold	Trip	Min.	Max.	Max.			Тур.	E174545	R 50366745
MF-R055/90	90	10	0.55	1.4	0.45	0.9	2.0	2.0	60	2.5	1	1
MF-R055/90U	90	10	0.55	1.4	0.45	0.9	2.0	2.0	60	2.5	1	✓
MF-R075/90	90	10	0.75	1.8	0.37	0.75	1.65	2.0	60	2.5	1	1

[&]quot;U" suffix indicates product without insulation coating.

Environmental Characteristics

Operating Temperature.....-40 °C to +85 °C

Recommended Storage.....+40 °C max, 70 % R.H. max.

Passive Aging +85 °C, 1000 hours ± 5 % typical resistance change Humidity Aging +85 °C, 85 % R.H. 1000 hours ± 5 % typical resistance change Thermal Shock +125 °C to -55 °C, 10 times ± 10 % typical resistance change Solvent Resistance ± 10 % typical resistance change ± 10 % typical resistance ± 10

Condition A

Test Procedures and Requirements

Test	Test Conditions	Accept/Reject Criteria
Visual/Mech	. Verify dimensions and materials	Per MF physical description
Resistance	In still air @ 23 °C	Rmin ≤ R ≤ Rmax
Time to Trip	5 times Ihold, Vmax, 23 °C	T ≤ max. time to trip (seconds)
Hold Current	. 30 min. at Ihold	No trip
Trip Cycle Life	. Vmax, Imax, 100 cycles	No arcing or burning
Trip Endurance	. Vmax, 48 hours	No arcing or burning
Solderability	245 °C ±5 °C, 5 seconds	95 % min. coverage

Thermal Derating Table - Ihold (Amps)

Model	Ambient Operating Temperature										
	-40 °C	-20 °C	0 ℃	23 °C	40 °C	50 °C	60 °C	70 °C	85 °C		
MF-R055/90	1.0	0.90	0.80	0.55	0.50	0.45	0.40	0.35	0.30		
MF-R055/90U	1.0	0.90	0.80	0.55	0.50	0.45	0.40	0.35	0.30		
MF-R075/90	1.32	1.15	1.04	0.75	0.70	0.63	0.55	0.47	0.35		

Itrip is approximately two times Ihold.

WARNING Cancer and Reproductive Harm - www.P65Warnings.ca.gov

Users should verify actual device performance in their specific applications.

^{*}RoHS Directive 2015/863, Mar 31, 2015 and Annex.

^{**} Bourns follows the prevailing definition of "halogen free" in the industry. Bourns considers a product to be "halogen free" if (a) the Bromine (Br) content is 900 ppm or less; (b) the Chlorine (Cl) content is 900 ppm or less; and (c) the total Bromine (Br) and Chlorine (Cl) content is 1500 ppm or less.

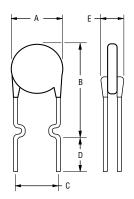
Specifications are subject to change without notice.

Applications

Almost anywhere there is a load to be protected with a voltage supply of up to 90 V, including:

- Broadband cable power passing taps
- Set-top boxes

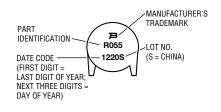
MF-R/90 Series - PTC Resettable Fuses


BOURNS

Product Dimensions

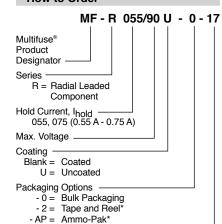
	A B		C (Pitch)	D	E	Phy	Physical Characteristics		
Model	Max.	Max.	Nom.	Min.	Max.	Style	Lead Dia.	Material	
MF-R055/90	10.9 (0.429)	16.7 (0.657)	$\frac{5.1 \pm 0.7}{(0.201 \pm 0.028)}$	6.3 (0.248)	3.6 (0.142)	1	<u>0.81</u> (0.032)	Sn/Cu	
MF-R055/90U	10.3 (0.406)	16.7 (0.657)	$\frac{5.1 \pm 0.7}{(0.201 \pm 0.028)}$	6.3 (0.248)	3.0 (0.118)	1	<u>0.81</u> (0.032)	Sn/Cu	
MF-R075/90	11.9 (0.469)	15.5 (0.610)	5.1 ± 0.7 (0.201 ± 0.028)	6.3 (0.248)	3.6 (0.142)	1	0.81 (0.032)	Sn/Cu	

DIMENSIONS: $\frac{MM}{(INCHES)}$


Style 1

Also available with straight leads (see How to Order).

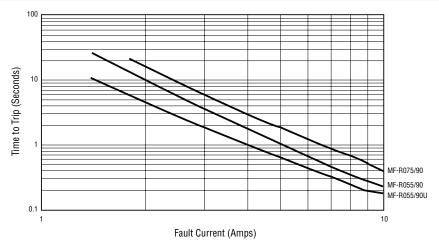
Typical Part Marking


Represents total content. Layout may vary.

Packaging Quantity

Bulk	500 pcs. per bag
Tape & Reel	1500 pcs. per ree
Ammo-Pack	1000 pcs. per pack

How to Order



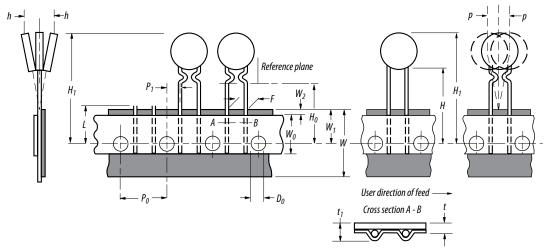
Part Number Suffix Option

- 17 = Straight Leads in Place of Standard Kinked Leads

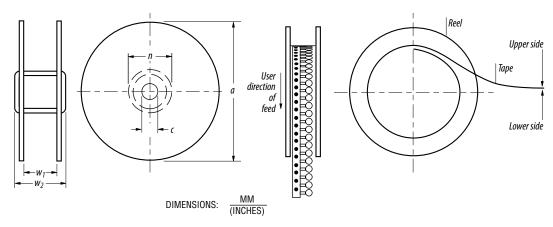
*Packaged per EIA-468

Typical Time to Trip at 23 °C

MF-R/90, REV. N, 11/19


MF-R/90 Series Tape and Reel Specifications

Devices taped using EIA-468/IEC 60286-2 standards. See table below and Figures 1 and 2 for details.


Dimension Description	Mark	EIA Mark	Dimensions	nsions Tolerance
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			18	-0.5/+1.0
Carrier tape width	W	W	(.709)	(-0.02/+.039)
Hold down tape width	W_0	W_0	<u>5</u> (.197)	min.
Hold down tape			No protrusion	
Adhesive tape position	W_2	W_2	<u>3</u> (.118)	max.
Sprocket hole position	W ₁	W ₁	9 (.354)	-0.5/+0.75 (-0.02/+0.03)
Sprocket hole diameter	D ₀	D ₀	4 (.157)	±0.2 (±.0078)
Height to seating plane (straight lead)	Н	Н	18 ~ 20 (.709 ~ .787)	, ,
Height to seating plane (formed lead)	H ₀	Н0	<u>16</u> (.63)	±0.5 (±.02)
Overall height above abscissa	H ₁	H ₁	38.5 (1.516)	max.
Cutout Length		L	<u>11</u> (.433)	max.
Sprocket hole pitch	P ₀	P ₀	12.7 (0.5)	±0.3 (±.012)
Device pitch	Р	Р	12.7 (0.5)	±0.3 (±.012)
Pitch tolerance			20 consecutive	±1 (±.039)
Composite tape thickness	t	t	0.9 (.035)	max.
Overall tape and lead thickness	t ₁	t ₁	2.0 (0.079)	max.
Splice sprocket hole alignment			0	±0.3 (±.012)
Front-to-back deviation	Δ_h	Δ_h	0	±1.0 (±.039)
Side-to-side deviation	$\Delta_{\mathcal{P}}$	$\Delta_{\mathcal{p}}$	0	±1.3 (±.051)
Ordinate to adjacent component lead	P ₁	P ₁	3.81 (0.150)	±0.7 (±0.028)
Lead spacing	F	F	5.08 (0.2)	+0.6/-0.2 (+0.024/-0.008)
Reel width including flanges and hub	W_4	w ₂	62.0 (2.44)	max.
Dimension between flanges (measured at hub)	W3	w ₁	allow proper ree	ling and unreeling
Reel diameter	Α	а	370.0 (14.57)	max.
Space between flanges (at hub, excluding device)			4.75 (.187)	±3.25 (±.128)
Arbor hole diameter	С	С	26.0 (1.024)	±12.0 (±.472)
Core diameter	N	n	80 (3.15)	min.
Box dimensions			$\frac{62}{(2.44)} \frac{372}{(14.6)} \frac{372}{(14.6)}$	max.
Consecutive missing places			3	max.
Empty places per reel			Not specified	

MM DIMENSIONS:

Taped Component Dimensions - per EIA Mark -Figure 1

Reel Dimensions - per EIA Mark -Figure 2

Bourns® Multifuse® PPTC Resettable Fuses

BOURNS

Application Notice

- Users are responsible for independent and adequate evaluation of Bourns® Multifuse® Polymer PTC devices in the user's application, including the PPTC device characteristics stated in the applicable data sheet.
- Polymer PTC devices must not be allowed to operate beyond their stated maximum ratings. Operation in excess of such
 maximum ratings could result in damage to the PTC device and possibly lead to electrical arcing and/or fire. Circuits with
 inductance may generate a voltage above the rated voltage of the polymer PTC device and should be thoroughly evaluated
 within the user's application during the PTC selection and qualification process.
- Polymer PTC devices are intended to protect against adverse effects of temporary overcurrent or overtemperature
 conditions up to rated limits and are not intended to serve as protective devices where overcurrent or overvoltage conditions
 are expected to be repetitive or prolonged.
- In normal operation, polymer PTC devices experience thermal expansion under fault conditions. Thus, a polymer PTC
 device must be protected against mechanical stress, and must be given adequate clearance within the user's application to
 accommodate such thermal expansion. Rigid potting materials or fixed housings or coverings that do not provide adequate
 clearance should be thoroughly examined and tested by the user, as they may result in the malfunction of polymer PTC
 devices if the thermal expansion is inhibited.
- Exposure to lubricants, silicon-based oils, solvents, gels, electrolytes, acids, and other related or similar materials may adversely affect the performance of polymer PTC devices.
- Aggressive solvents may adversely affect the performance of polymer PTC devices. Conformal coating, encapsulating, potting, molding, and sealing materials may contain aggressive solvents including but not limited to xylene and toluene, which are known to cause adverse effects on the performance of polymer PTCs. Such aggressive solvents must be thoroughly cured or baked to ensure their complete removal from polymer PTCs to minimize the possible adverse effect on the device.
- Recommended storage conditions should be followed at all times. Such conditions can be found on the applicable data sheet and on the Multifuse® Polymer PTC Moisture/Reflow Sensitivity Classification (MSL) note: https://www.bourns.com/docs/RoHS-MSL/msl_mf.pdf