

Features

- Surface Mount Device
- Reduced footprint size
- High voltage surge capabilities
- Assists in meeting ITU K.20/K.21/K.45 specifications
- RoHS compliant*
- Agency recognition: c 🗫 us 🟯

Applications

Provides overcurrent protection in:

- Customer Premise Equipment (CPE)
- Central Office (CO)
- Access/Outside Plant Equipment

MF-SM013/250V - Telecom PTC Resettable Fuses

Electrical Characteristics

	Max. Max. Interrupt Operating Ratings		Hold Current	Initial Resistance		One Hour Post-Trip Resistance	Tripped Power Dissipation	
Model	Voltage	Volts (V)	Amps (A)	Amps at 23 °C	Ohms at 23 °C	Ohms at 23 °C	Ohms at 23 °C	Watts at 23 °C
	Volts	Max.	Max.	lΗ	Min.	Max.	Max.	Тур.
MF-SM013/250V	60	250	3.0	0.13	4.0	7.0	16.0	3.0
MF-SM013/250V-B5	60	250	3.0	0.13	9.0	12.0	20.0	3.0

Environmental Characteristics

Operating TemperatureStorage Condition		
		dE 0/ trainel resistance change
	+85 °C, 1000 hours	
Humidity Aging	+85 °C, 85 % R.H. 1000 hours	±15 % typical resistance change
Thermal Shock	MIL-STD-202F, Method 107G,	±15 % typical resistance change
	-55 °C to +125 °C,10 times	
Solvent Resistance	MIL-STD-202, Method 215B	Marking still legible
Vibration	MIL-STD-883C, Method 2007.1, Condition A	±5 % typical resistance change
Moisture Sensitivity Level (MSL)	<u>See Note</u>	
ESD Classification - HBM	Class 6	

Test Procedures And Requirements

Test		Accept/Reject Criteria
Visual/Mech	. Verify dimensions and materials	Per MF physical description
Resistance	. In still air @ 23 °C	Rmin ≤ R ≤ Rmax
Time to Trip	. At specified current, Vmax, 23 °C	$T \le max$. time to trip (seconds)
Hold Current	. 30 min. at Ihold	No trip
Trip Cycle Life	. Vmax, Imax, 100 cycles	No arcing or burning
Trip Endurance	. Vmax, 48 hours	No arcing or burning
Solderability	. 245 °C ±5 °C, 5 seconds	>95 % coverage
•	•	· ·

 UL File Number
 E174545

 TÜV File Number
 R50362083

Thermal Derating Chart - Ihold/Itrip (Amps)

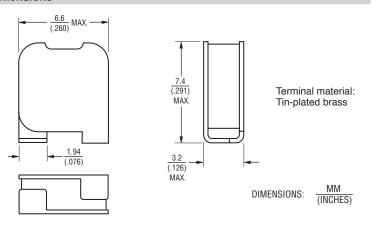
Model				Ambient C	perating Te	mperature			
Model	-40 °C	-20 °C	0 °C	23 °C	40 °C	50 °C	60 °C	70 °C	85 °C
MF-SM013/250V	0.22	0.19	0.16	0.13	0.105	0.090	0.075	0.060	0.040
MF-SM013/250V-B5	0.22	0.19	0.16	0.13	0.105	0.090	0.075	0.060	0.040

Itrip is approximately two times Ihold.

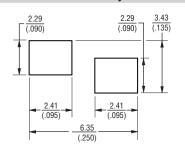
WARNING Cancer and Reproductive Harm - www.P65Warnings.ca.gov

 ${}^{\star}\text{RoHS Directive 2002/95/EC Jan. 27, 2003 including annex and RoHS Recast 2011/65/EU June 8, 2011.}$

Specifications are subject to change without notice.

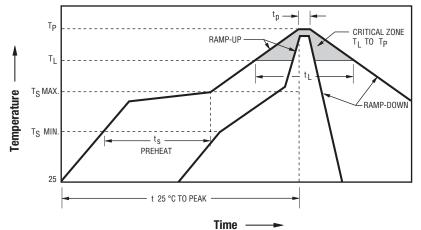

Users should verify actual device performance in their specific applications.

The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.


MF-SM013/250V - Telecom PTC Resettable Fuses

BOURNS®

Product Dimensions


Recommended Pad Layout

Packaging Quantity

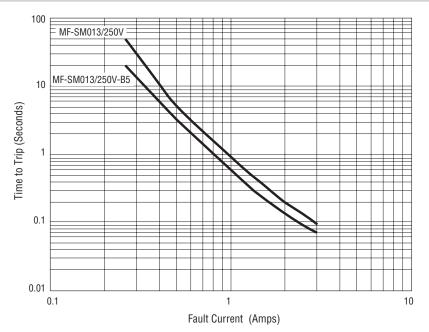
1,000 pieces per reel

Solder Reflow Recommendations

Notes:

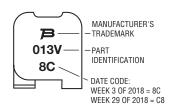
- MF-SM013/250V models cannot be wave soldered or hand soldered. Please contact Bourns for soldering recommendations.
- All temperatures refer to topside of the package, measured on the package body surface.
- If reflow temperatures exceed the recommended profile, devices may not meet the published specifications.
- Compatible with Pb and Pb-free solder reflow profiles.
- Excess solder may cause a short circuit, especially during hand soldering. Please refer to the Multifuse® Polymer PTC Soldering Recommendation guidelines.

Profile Feature	Pb-Free Assembly
Average Ramp-Up Rate (Ts _{max} to T _p)	3 °C / second max.
PREHEAT: Temperature Min. (Ts _{min}) Temperature Max. (Ts _{max}) Time (Ts _{min} to Ts _{max}) (ts)	150 °C 200 °C 60~180 seconds
TIME MAINTAINED ABOVE: Temperature (T _L) Time (t _L)	217 °C 60~150 seconds
Peak Temperature (T _p)	260 °C
Time within 5 °C of Actual Peak Temperature (tp)	20~40 seconds
Ramp-Down Rate	6 °C / second max.
Time 25 °C to Peak Temperature	8 minutes max.


Specifications are subject to change without notice.

Users should verify actual device performance in their specific applications.

MF-SM013/250V - Telecom PTC Resettable Fuses


BOURNS

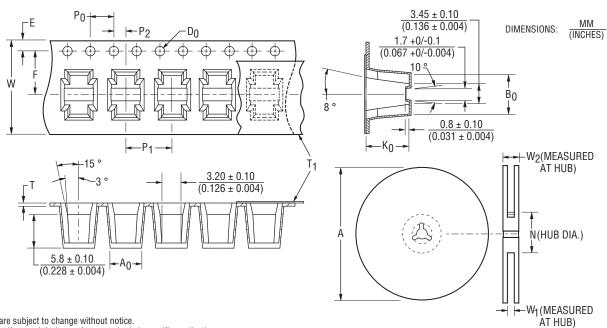
Typical Time to Trip at 23 °C



Typical Part Marking

Represents total content. Layout may vary.

How to Order



- 0 = Bulk Packaging - 2 = Tape and Reel*

*Packaged per EIA 481

MF-SM013/250V Series Tape and Reel Specifications

	MF-SM013/250V Series
Tape Dimensions	per EIA 481
W max.	<u>16.3</u>
TT TIMA.	(0.642)
P_0	4.0 ± 0.1
- 0	(0.157 ± 0.004)
P ₁	$\frac{8.0 \pm 0.1}{(0.045 \pm 0.004)}$
·	(0.315 ± 0.004)
P_2	$\frac{2.0 \pm 0.1}{(0.079 \pm 0.004)}$
-	$\frac{(0.079 \pm 0.004)}{5.0 \pm 0.1}$
A_0	$\frac{5.0 \pm 0.1}{(0.197 \pm 0.004)}$
	6.7 ± 0.1
B_0	$\frac{0.7 \pm 0.7}{(0.262 \pm 0.004)}$
	1.5 +0.1/-0.0
D_0	10.00000000000000000000000000000000000
	7.5 ± 0.1
F	(0.295 + 0.004)
E	1.75 ± 0.1
	(0.069 ± 0.004)
Т	0.5 ± 0.05
	(0.020 ± 0.002)
T ₁ max.	
	(0.004)
Κ ₀	$\frac{7.45 \pm 0.1}{(0.0000 \pm 0.004)}$
	(0.293 ± 0.004)
Leader min.	390 (15.35)
	160
Trailer min.	(6.30)
	(0.00)
Reel Dimensions	
A	332
A max.	(13.1)
N min.	98
IN IIIIII.	(3.86)
W ₁	16.4 +2.0/-0.0
<u>***1</u>	(0.646 +0.079/-0)
W ₂ max.	_22.4_
112 11900	(0.882)

Specifications are subject to change without notice.

Bourns® Multifuse® PPTC Resettable Fuses

BOURNS

Application Notice

- Users are responsible for independent and adequate evaluation of Bourns® Multifuse® Polymer PTC devices in the user's application, including the PPTC device characteristics stated in the applicable data sheet.
- Polymer PTC devices must not be allowed to operate beyond their stated maximum ratings. Operation in excess of such
 maximum ratings could result in damage to the PTC device and possibly lead to electrical arcing and/or fire. Circuits with
 inductance may generate a voltage above the rated voltage of the polymer PTC device and should be thoroughly evaluated
 within the user's application during the PTC selection and qualification process.
- Polymer PTC devices are intended to protect against adverse effects of temporary overcurrent or overtemperature
 conditions up to rated limits and are not intended to serve as protective devices where overcurrent or overvoltage conditions
 are expected to be repetitive or prolonged.
- In normal operation, polymer PTC devices experience thermal expansion under fault conditions. Thus, a polymer PTC
 device must be protected against mechanical stress, and must be given adequate clearance within the user's application to
 accommodate such thermal expansion. Rigid potting materials or fixed housings or coverings that do not provide adequate
 clearance should be thoroughly examined and tested by the user, as they may result in the malfunction of polymer PTC
 devices if the thermal expansion is inhibited.
- Exposure to lubricants, silicon-based oils, solvents, gels, electrolytes, acids, and other related or similar materials may adversely affect the performance of polymer PTC devices.
- Aggressive solvents may adversely affect the performance of polymer PTC devices. Conformal coating, encapsulating, potting, molding, and sealing materials may contain aggressive solvents including but not limited to xylene and toluene, which are known to cause adverse effects on the performance of polymer PTCs. Such aggressive solvents must be thoroughly cured or baked to ensure their complete removal from polymer PTCs to minimize the possible adverse effect on the device.
- Recommended storage conditions should be followed at all times. Such conditions can be found on the applicable data sheet and on the Multifuse® Polymer PTC Moisture/Reflow Sensitivity Classification (MSL) note: https://www.bourns.com/docs/RoHS-MSL/msl_mf.pdf