
Whether you are a beginner, or a professional, this
powerful tool, with intuitive interface and convenient
set of commands will enable you to track down bugs
quickly. mikroICD™ is one of the fastest, and most
reliable debugging tools on the market. mikroICD™

in-circuit debugger

St
ar

t
D

eb
ug

ge
r

[F
9

]

R
un

/P
au

se
 D

eb
ug

ge
r

[F
6

]

St
op

 D
eb

ug
ge

r
[C

tr
l+

F2
]

St
ep

 in
to

 [
F7

]

St
ep

 O
ve

r
[F

8
]

St
ep

 O
ut

 [
Ct

rl
+

F8
]

R
un

 T
o

Cu
rs

or
 [

F4
]

To
gg

le
 B

re
ak

po
in

t
[F

5
]

Sh
ow

/H
id

e
B

re
ak

po
in

ts
 [

Sh
if

t+
F4

]

Cl
ea

r
br

ea
kp

oi
nt

s
[C

tr
l+

Sh
if

t+
F5

]

Ju
m

p
To

 In
te

rr
up

t
[F

2
]

Exploit the full potential of real-time hardware debugging

Page 3

I want to express my thanks to you for being interested in our products and for having

confidence in MikroElektronika.

The primary aim of our company is to design and produce high quality electronic products

and to constantly improve the performance thereof in order to better suit your needs.

TO OUR VALUED CUSTOMERS

Nebojsa Matic

General Manager

The PIC®, dsPIC®, PIC24®, PIC32® and Windows® logos and product names are trademarks of Microchip Technology® and Microsoft® in the U.S.A. and other countries.

Page 3

Introduction to mikroICD™ 4

What is mikroICD™? 4

Key features 4

Hardware and software 5

Compilers 5

mikroProg™ 5

1. Starting compiler 6

2. Preparing mikroICD™ 7

Step 1 - Enable mikroICD™ 7

Step 2 - Build your project 7

3. Start mikroICD™ debugging 8

4. Watch Window 10

What are the Watch Variables? 10

Types of variables 10

Adding Watch Variables 10

Step 1 - Select variable 10

Step 2 - Add variable 11

5. Debugger toolbar 12

Debug commands 12

Execute commands 12

Managing breakpoints 12

6. Real-Time debugging 14

Step by Step 14

Execute remaining lines 14

Execute to cursor 14

7. Using Breakpoints 15

Hardware and software breakpoints 15

8. Advanced Breakpoints Option 16

9. Disassembly view 18

10. EEPROM Watch window 19

11. RAM window 20

12. CODE Watch window 21

Table of Contents

Page 4 Page 5

Introduction to mikroICD™

mikroICD™ is a highly effective tool for a

Real-Time debugging on hardware level. The

mikroICD™ debugger enables you to execute

your program on the host microcontroller and

view variable values, Special Function Registers

(SFR), RAM, CODE and EEPROM memory

along with the mikroICD™ code execution

on hardware. In order to use mikroICD™ it is

necessary to have the appropriate hardware

(mikroProg™ for PIC®, dsPIC® and PIC32®)

and software (Mikroelektronika compilers for

PIC®, dsPIC® or PIC32®).

Supported in all Mikroelektronika hardware programers for

PIC®, dsPIC® and PIC32® (mikroProg™ for PIC®, dsPIC® and
PIC32®)

 Supported in all MikroElektronika compilers for PIC®, dsPIC®

and PIC32® (mikroC™, mikroBasic™ and mikroPascal™)

Real time step by step debugging

Can monitor SFR, RAM, CODE and EEPROM memory

What is mikroICD™? Key features

Page 4 Page 5

Hardware and software

All MikroElektronika compilers (mikroC™, mikroBasic™ and mikroPascal™) for PIC®, dsPIC®

and PIC32® natively support mikroICD™. Specialized mikroICD™ DLL module allows compilers

to exploit the full potential of fast hardware debugging. Along with compilers, make sure to install

the appropriate programmer drivers and mikroProg Suite™ for PIC® programming software.

mikroICD™ is included with on-board

programmers on mikroElektronika develop-

ment systems and on mikroProg™ for
PIC®, dsPIC® and PIC32® stand alone

programmer. Microcontroller on target device

is connected with programmer via PGC, PGD and

MCLR pins. These pins are used for programing

purposes and cannot be used as I/O while mikroICD™ is in use. Before using mikroICD™ it is

necessary to program target microcontroller with a debug-enabled version of your output HEX file.

mikroProg™ programmer

Compilers

Page 6 Page 7

1. Starting compiler

After the appropriate software

and hardware is installed and

attached to your PC it’s time to

start the chosen compiler.

In this manual we will use

mikroC PRO for PIC compiler.

All other compilers (mikroBasic™

and mikroPascal™ for PIC®,

dsPIC® and PIC32®) have the

same IDE so using mikroICD™

is the same for all.

After the compiler is started

write a new project or open the

existing one.

Figure 1-1: mikroC PRO for PIC window

mikroC PRO
for PIC icon

Page 6 Page 7

Under Project Settings - Build /Debugger Type, select ICD
Debug and mikroICD™ options.

Next step is to build your project and to program it to MCU

memory. To do that click on Build > Build + Program [Ctrl+F11]

option or click on icon in the build toolbar. Compiler will

automatically build the program and start mikroProg Suite™ for

PIC® software which will program the code into microcontroller.

Figure 2-1: Build/Debugger
Type options

Figure 2-2: Build menu Figure 2-3: Build toolbar

2. Preparing mikroICD™

01 01

02 02

Select ICD Debug option to create debug output HEX file.

Select mikroICD™ option to enable usage of mikroICD™
debugger for debugging

Activate Build Menu

From drop down menu select Build + Program option or
press [Ctrl+F11] on your keyboard

01

02

Step 1 - Enable mikroICD™

Step 2 - Build your project

02

In order to use mikroICD™, you have to program your microcontroller

with debug-enabled .HEX file of your project. This is done in two

simple steps:

01

Page 8 Page 9

3. Start mikroICD™ debugging

To start mikroICD™ debugging open the

Run menu and click the Start Debugger

[F9] option or icon from Run toolbar.

Figure 3-1: Run menu

01

02

Click the Run option

From drop down menu select Start
Debugger option or press [F9] on
keyboard

01

02

Make sure to enable power supply on your devicenote Figure 3-2: mikroC window during debugging

Page 8 Page 9

Figure 3-3: Execution line is highlighted

Figure 3-4: Open watch values window Figure 3-5: Watch values window

When mikroICD™ debugging is started a program line which will

be next executed is highlighted with a blue strip.

Within Watch Values window you can set which registers or

variables are going be monitored.

Next step is to select values which will be monitored. Click on

View -> Debug Windows -> Watch Window [Shift+F5] or click

the icon to open Watch Values window.

Page 10 Page 11

Step 1 - Select variableWhat are the Watch Variables?

Types of variables

Adding Watch Variables

Figure 4-1: Select variable for monitoring

01

02

Click to show drop down menu.

Select desired variable for monitoring

01

02

4. Watch Window

Each special function register (SFR), and user defined variables

which are not removed by the optimizer, can be monitored in

Watch Window during the debugging process. With execution of

each program line, values of selected variables are automatically

updated. Watch Window also provides the information about the

memory address and the full assembly name of each variable.

Purple colored variables are special function registers and sbit
variables from the definition file of the selected microcontroller.

Black colored variables represent user defined variables, or

variables used internally by compiler libraries.

Adding variable for monitoring can be done in two simple ways:

by selecting the variable from the drop down list, or by searching

for the desired variable using the search box.

Page 10 Page 11

Step 2 - Add variable

Figure 4-2: Add variable for monitoring Figure 4-3: Search for variable

01

02

Click the Add button and selected variable will be added to list

List with selected variables

01

02

03

Type in variable assembly name

Click on add variable button

Variable is added to list

02
01 02

03

Instead of selecting variable from list you can type in variable

assembly name in the search box.

01

Page 12 Page 13

Figure 5-1: Debugger toolbar
To simplify debugging compiler IDE contains toolbar with icons

that allow single click access to mikroICD™ commands.

The first three icons on the toolbar are

used for starting/stopping debugger:

 Start debugger [F9]

 Run/Pause Debugger [F6]

 Stop Debugger [Ctrl + F2]

Next set of icons enables you to

execute program in real time:

 Step Into [F7]

 Step Over [F8]

 Step Out [Ctrl + F8]

 Run To Cursor [F4]

Last set of icons is related to breakpoints

and interrupt option:

 Toggle Breakpoint [F5]

 Show/Hide breakpoints [Shift+F4]

 Clears breakpoints [Shift+Ctrl+F5]

 Jump to interrupt [F2]

5. Debugger toolbar

Execution commands Managing breakpointsDebug commands

Page 12 Page 13

Toolbar
Icon

Name Shortcut Description

Start Debugger [F9] Starts Debugger.

Run/Pause Debugger [F6] Run/Pause Debugger.

Stop Debugger [Ctrl + F2] Stops Debugger.

Step Into [F7]
Executes the current program line, then halts. If the executed program line calls
another routine, the debugger steps into the routine and halts after executing
the first instruction within it.

Step Over [F8]
Executes the current program line, then halts. If the executed program line calls
another routine, the debugger will not step into it. The whole routine will be
executed and the debugger halts at the first instruction following the call.

Step Out [Ctrl + F8]
Executes all remaining program lines within the subroutine. The debugger halts
immediately upon exiting the subroutine.

Run To Cursor [F4] Executes the program until reaching the cursor position.

Toggle Breakpoint [F5]
Toggle breakpoints option sets new breakpoints or removes those already set at
the current cursor position.

Show/Hide breakpoints [Shift+F4] Shows/Hides window with all breakpoints

Clears breakpoints [Shift+Ctrl+F5] Deletes selected breakpoints

Jump to interrupt [F2] Opens window with available interrupts (doesn’t work in mikroICD™ mode)

Page 14 Page 15

Real-Time debugging enables execution of program in three different ways:

To execute program one line at the time

you can use Step Into [F7] and

Step Over [F8] options

Execution of all remaining program lines

is available via Step Out [Ctrl+F8]
option. Debugging will stop when all

lines in subroutine are executed.

In order to execute program starting

from the current line to one where cursor

is placed, use option Run to Cursor

[F4]. Program will start execution at the

current line (blue strip) and it will stop at

line where cursor is placed.

6. Real-Time debugging

Step by Step Execute remaining lines Execute to cursor

Page 14 Page 15

7. Using Breakpoints

There are two kinds of breakpoints - hardware and software breakpoints.

The only visible difference between them is in the speed of program

execution before it reaches the specified program line.

Hardware breakpoints are placed within the microcontroller chip and

provide considerably faster program execution. The total number of software

breakpoints goes up to 16, while the number of hardware breakpoints is

much smaller. For example, PIC16® microcontrollers have only one, whereas

PIC18® microcontrollers have up to 3 hardware breakpoints. When all

hardware breakpoints are used, then remaining breakpoints in the program

will be used as software breakpoints.

Figure 7-1: Breakpoint selection

01

02

Click on a blue dot to place a breakpoint

Lines 31 and 34 are enabled as breakpoints

01

02

The mikroICD™ enables each program line to be marked with a breakpoint.

The breakpoint is an intentional stopping or pausing place in the program

used for the purpose of debugging.

Breakpoints are placed in the program by clicking the blue dots to the

left of the program line or by pressing icon [F5]. By selecting the

Run command icon [F6], the microcontroller will execute the program

from the current location (highlighted in blue) until it reaches a breakpoint

(highlighted in red). The debugger halts after reaching the breakpoint.

Hardware and software breakpoints

Page 16 Page 17

The mikroICD™ provides the means for using the

Advanced Breakpoints option with PIC18®, PIC24®

and dsPIC® microcontrollers. To enable it, check the

Advanced Breakpoints check box within the Watch

Values window. To configure the Advanced Breakpoints

option it is necessary to start up mikroICD™ [F9]

and select the View › Debug Windows › Advanced
Breakpoints option or to use the keyboard shortcut

[Ctrl+Shift+A].

Figure 8-2: Advanced breakpoints windowFigure 8-1: Advanced breakpoints menu

8. Advanced Breakpoints Option

01

02

03

Page 16 Page 17

The Program Memory Break option is used for placing breakpoints at specified addresses in the program memory. The value entered in

the Address field must be in the HEX format.

The File Register Break option is used for stopping code execution when read/write access to the specified data memory location

occurs. If the Read Access option is selected, the File Register Equal option can be used for setting the appropriate value in the Value

field. The program execution will be stopped when the value read from the specified data memory location matches the value written in

the Value field. All the values entered in the Value field must be in the HEX format.

Emulator Features enables the usage of Event Breakpoints and Stopwatch.

01

02

03

To use the Stopwatch define Breakpoint#2 and Breakpoint#3 as a Start and Stop

conditions and check the Enable Stopwatch checkbox.

Halt on Start Condition (Breakpoint#2) : when checked, the program execution

will stop on Breakpoint#2. Otherwise, Breakpoint#2 will be used only to start the

Stopwatch.

Halt on Stop Condition (Breakpoint#3) : when checked, the program execution will stop

on Breakpoint#3. Otherwise, Breakpoint#3 will be used only to stop the Stopwatch.

Reset Stopwatch on Run : when checked, the Stopwatch will be cleared before

continuing program execution and the next counting will start from zero. Otherwise, the

next counting will start from the previous Stopwatch value.

Break on Stack Overflow/Underflow :

not implemented.

Break on Watchdog Timer :

not implemented.

Break on SLEEP : break on SLEEP

instruction. SLEEP instruction will not be

executed. If you choose to continue the

mikroICD debugging [F6] then the program

execution will start from the first instruction

following the SLEEP instruction.

Enable StopwatchEvent Breakpoints

Page 18 Page 19

During the process of compiling, each program line written in a high-

level programming language is replaced with one or more assembly

instructions. To display program in the assembly language, select

the View > Listing option or click icon in toolbar. In this case,

the process of simulating and debugging is performed in the same

way as if the program is written in a high-level programming

language. To toggle between high-level language and assembly

language press [Alt+D] on your keyboard or click on icon.

9. Disassembly view

Figure 9-1: High-level programming language Figure 9-2: Assembly language

Page 18 Page 19

10. EEPROM Watch window

You can start EEPROM Watch window using View › Debug Windows > EEPROM Window option. It shows the values currently stored

in the MCU internal EEPROM memory.

Figure 10-1: EEPROM watch window

01

02

Click the Read EEPROM

button to read the contents

of microcontroller EEPROM

memory which will be shown in

the EEPROM Watch window.

Click the Write EEPROM button

to program the data from the

EEPROM Watch window into

the internal EEPROM memory

of the microcontroller.

01 02

Page 20 Page 21

01 In the table cell you can type in

value in hexadecimal format. To

write typed value into the MCU

RAM memory press Enter key on

your keyboard.

The mikroICD™ allows you to view the contents of the microcontroller’s RAM memory using the RAM window. You can activate it by

clicking the View > Debug Windows > RAM Window option.

Unlike the Watch Window option, all

memory locations are displayed in a table.

The content of each RAM location is

displayed in the hexadecimal format and

may be changed at any time during the

operation of the microcontroller. Changed

values are directly written in to the

microcontroller by pressing Enter key.

Figure 11-2: RAM window

Figure 10-1: RAM Window option

11. RAM window

01

Page 20 Page 21

12. CODE Watch window

The CODE Watch window will appear by selecting the View › Debug Windows > CODE Window option. It shows the values currently

stored in the MCU internal FLASH memory.

Figure 12-1: CODE Watch

01

02

02

Click the Read Code button to read

content of MCU FLASH memory

Progress bar monitors code reading

process

After code reading is finished you can
preview it in the table

01 02

03

Page 22

Notes:

Page 22

DISCLAIMER

All the products owned by MikroElektronika are protected by copyright law and international copyright treaty. Therefore, this manual is to be treated as any
other copyright material. No part of this manual, including product and software described herein, may be reproduced, stored in a retrieval system, translated or
transmitted in any form or by any means, without the prior written permission of MikroElektronika. The manual PDF edition can be printed for private or local use,
but not for distribution. Any modification of this manual is prohibited.

MikroElektronika provides this manual ‘as is’ without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties or
conditions of merchantability or fitness for a particular purpose.

MikroElektronika shall assume no responsibility or liability for any errors, omissions and inaccuracies that may appear in this manual. In no event shall MikroElektronika,
its directors, officers, employees or distributors be liable for any indirect, specific, incidental or consequential damages (including damages for loss of business
profits and business information, business interruption or any other pecuniary loss) arising out of the use of this manual or product, even if MikroElektronika has
been advised of the possibility of such damages. MikroElektronika reserves the right to change information contained in this manual at any time without prior
notice, if necessary.

TRADEMARKS

The MikroElektronika name and logo, the MikroElektronika logo, mikroC™, mikroBasic™, mikroPascal™, mikroProg™, EasyPIC™, EasyPIC PRO™, mikroICD™ and
mikromedia™ are trademarks of MikroElektronika. All other trademarks mentioned herein are property of their respective companies.
All other product and corporate names appearing in this manual may or may not be registered trademarks or copyrights of their respective companies, and are only
used for identification or explanation and to the owners’ benefit, with no intent to infringe.

Copyright © MikroElektronika, 2012, All Rights Reserved.

HIGH RISK ACTIVITIES

The products of MikroElektronika are not fault – tolerant nor designed, manufactured or intended for use or resale as on – line control equipment in hazard-
ous environments requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic
control, direct life support machines or weapons systems in which the failure of Software could lead directly to death, personal injury or severe physical or
environmental damage (‘High Risk Activities’). MikroElektronika and its suppliers specifically disclaim any expressed or implied warranty of fitness for High
Risk Activities.

