i.MX RT500 Low-Power Crossover Processor

The i.MX RT500 is a family of dual-core microcontrollers for embedded applications featuring an Arm Cortex-M33 CPU combined with a Cadence® Xtensa® Fusion F1 Audio Digital Signal Processor CPU. The Cortex-M33 includes two hardware coprocessors providing enhanced performance for an array of complex algorithms along with a 2D Vector GPU with LCD Interface and MIPI DSI PHY. The family offers a rich set of peripherals and very low power consumption. The device has up to 5 MB SRAM, two FlexSPIs (Octal/Quad SPI Interfaces) each with 32 KB cache, one with dynamic decryption, high-speed USB device/host + PHY, 12-bit 1 MS/s ADC, Analog Comparator, Audio subsystems supporting up to 8 DMIC channels, 2D GPU and LCD Controller with MIPI DSI PHY, SDIO/eMMC; FlexIO; AES/SHA/Crypto M33 coprocessor and PUF key generation

Control processor core

- Arm Cortex-M33 processor, running at frequencies of up to 275 MHz
- Arm TrustZone
- Arm Cortex-M33 built-in Memory Protection Unit (MPU) supporting eight regions
- Single-precision Hardware Floating Point Unit (FPU).
- Arm Cortex-M33 built-in Nested Vectored Interrupt Controller (NVIC).
- Non-maskable Interrupt (NMI) input.
- Two coprocessors for the Cortex-M33: a hardware accelerator for fixed and floating point DSP functions (PowerQuad) and a Crypto/FFT engine (Casper). The DSP coprocessor uses a bank of four dedicated 8 KB SRAMs. The Crypto/FFT engine uses a bank of two 2 KB SRAMs that are also AHB accessible by the CPU and the DMA engine.
- Serial Wire Debug with eight break points, four watch points, and a debug timestamp counter. It includes Serial Wire Output (SWO) trace and ETM trace.
- Cortex-M33 System tick timer

DSP processor core

- Cadence Tensilica Fusion F1 DSP processor, running at frequencies of up to 275 MHz.
- Hardware Floating Point Unit.
- Serial Wire Debug (shared with Cortex-M33 Control Domain CPU).

Communication interface

- Up to 9-12 configurable universal serial interface modules (Flexcomm Interfaces). Each module contains an integrated FIFO and DMA support. Each of the nine modules can be configured as:
	- A USART with dedicated fractional baud rate generation and flow-control handshaking signals. The USART can optionally be clocked at 32 kHz and operated when the chip is in reduced power mode, using either the 32 kHz clock or an externally supplied clock. The USART also provides partial support for LIN2.2.
	- An I2C-bus interface with multiple address recognition, and a monitor mode. It supports 400 Kb/sec Fast-mode and 1 Mb/sec Fastmode Plus. It also supports 3.4 Mb/sec highspeed when operating in slave mode.
	- An SPI interface.
	- An I2S (Inter-IC Sound) interface for digital audio input or output. Each I2S supports up to four channel-pairs.
- Two additional high-speed SPI interfaces supporting 50 MHz operation
- One additional I2C interface with open-drain pads
- Two I3C bus interfaces
- A digital microphone interface supporting up to 8 channels with associated decimators and Voice

Five I/O Power Rails

• Five independent supplies powering different clusters of pins to permit interfacing directly to off-chip peripherals operating at different supply levels.

On-chip memory

- Up to 5 MB of system SRAM accessible by both CPUs, both DMA engines, the Graphics Subsystem and all other AHB masters.
- Additional SRAMs for USB traffic (16 KB), Cortex-M33 co-processors (4 x 8 KB), SDIO FIFOs (2 x 512 B dualport), PUF secure key generation (2 KB), FlexSPI caches (32 KB each), SmartDMA commands (32 KB), and a variety of dual and single port RAMs for graphics.
- 16 kbits OTP fuses
- Up to 192 KB ROM memory for factory-programmed drivers and APIs
- System boot from High-speed SPI, FlexSPI Flash, HS USB, I2C, UART or eMMC via on-chip bootloader software included in ROM. FlexSPI boot mode will include an option for Execute-in-place start-up for nonsecure boot.

Digital peripherals

- Two general purpose DMA engines, each with 37 channels and up to 27 programmable request/trigger sources.
	- Can be configured such that one DMA is secure and the other non-secure and/or one can be designated for use by the M33 CPU and the other by the DSP
- Smart DMA Controller with dedicated 32KB code RAM
- USB high-speed host/device controller with on-chip PHY and dedicated DMA controller.
- Two FlexSPI (Octal/Quad) Interfaces up to 200 MHz DDR/SDR (target). 32 KB caches with selectable cache policies based on programmable address regions. One of the FlexSPI interface will include onthe-fly decryption for execute-in-place and addressremapping to support dual-image boot. DMA supported (both modules).
- Two SD/eMMC memory card interfaces with dedicated DMA controllers. One supports eMMC 5.0 with HS400/DDR operation.

Analog peripherals

- One 12-bit ADC with sampling rates of 1 Msamples/sec and an enhanced ADC controller. It supports up to 6 single-ended channels or 2 differential channels. The ADC supports DMA.
- Temperature sensor.
- Analog comparator

Activation Detect. One pair of channels can be streamed directly to I2S. The DMIC supports DMA.

Timers

- One 32-bit SCTimer/PWM module (SCT). Multipurpose timer with extensive event-generation, match/compare, and complex PWM and output control features.
	- 10 general-purpose/PWM outputs, 8 generalpurpose inputs
	- It supports DMA and can trigger external DMA events
	- It supports fractional match values for high resolution
- Five general purpose, 32-bit timer/counter modules with PWM capability
- 24-bit multi-rate timer module with 4 channels each capable of generating repetitive interrupts at different, programmable frequencies.
- Two Windowed Watchdog Timers (WDT) with dedicated watchdog oscillator (1 MHz LPOSC)
- Frequency measurement module to determine the frequency of a selection of on-chip or off-chip clock sources.
- Real-Time Clock (RTC) with independent power supply and dedicated oscillator. Integrated wake-up timer can be used to wake the device up from lowpower modes. The RTC resides in the "always-on" voltage domain. RTC includes eight 32-bit generalpurpose registers which can retain contents when power is removed from the rest of the chip.
- Ultra-low power micro-tick Timer running from the Watchdog oscillator with capture capability for timestamping. Can be used to wake up the device from low-power modes.
- 64-bit OS/Event Timer common to both processors with individual match/capture and interrupt generation logic.

Clocks

- Crystal oscillator with an operating range of 4 MHz to 32 MHz.
- Dual trim option: Internal 192/96 MHz FRO oscillator. Trimmed to 1% accuracy.
- FRO capable of being tuned using an accurate reference clock (eg. XTAL Osc) to 0.1% accuracy with 46% duty cycle.
- Internal 1 MHz low-power oscillator with 10% accuracy. Serves as the watchdog oscillator and clock for the OS/Event Timer and the Systick among others. Also available as the system clock to both domains.
- 32 kHz real-time clock (RTC) oscillator that can optionally be used as a system clock.
- Main System PLL:
	- allows CPU operation up to the maximum rate without the need for a high-frequency crystal.

Graphics/Multimedia

- 2D Vector Graphics Processing Unit, running at frequencies of up to 275 MHz.
- LCD Display Interface supporting smart LCD displays and video mode.
- MIPI DSI Interface with on-chip PHY supporting transfer rates up to 895.1 Mbps.
- FlexIO can be configured to provide a parallel interface to an LCD

I/O Peripherals

- Up to 136 general purpose I/O (GPIO) pins with configurable pull-up/pull-down resistors. Ports can be written as words, half-words, bytes, or bits.
- Mirrored, secure GPIO0.
- Individual GPIO pins can be used as edge and level sensitive interrupt sources, each with its own interrupt vector.
- All GPIO pins can contribute to one of two ganged (OR'd) interrupts from the GPIO_HS module.
- A group of up to 7 GPIO pins (from Port0/1) can be selected for Boolean pattern matching which can generate interrupts and/or drive a "pattern-match" output.
- Adjustable output driver slew rates.
- JTAG boundary scan

Security

- **Secure Isolation:** Protection from software and remote attacks using Trustzone for armV8M. Hardware isolation of AES keys
- **Secure Boot:** firmware in ROM providing immutable root of trust
- **Secure Storage:** Physically Unclonable Function (PUF) based key store, On-the-fly-AES decryption (OTFAD) of off-chip flash for code storage
- **Secure Debug:** Certificate based debug authentication mechanism
- **Secure Loader:** Supports firmware update mechanism with authenticity (RSA signed) and confidentiality (AES-CTR encrypted) protection
- **Secure Identity:** 128-bit Universal Unique Identifier (UUID), 256-bit Compound Device Identifier (CDI) per TCG DICE specification
- **Cryptographic Accelerators**
	- Symmetric cryptography (AES) with 128/192/256-bit key strength and protection against Side-channel analysis (Differential Power Analysis and Template attacks)
	- Asymmetric cryptography acceleration using CASPER co-processor
	- NIST SP 800-90b compliant TRNG design with 512-bit output per call
	- Hash engine with SHA-256 and SHA1

May be run from the FRO, the crystal oscillator or the CLKIN pin.

- a second, independent PLL output provides alternate high-frequency clock source for the DSP CPU if the required frequency is different from the main system clock. (Note: 2nd PFD output from Main System PLL)
- two additional PLL outputs provide potential clock sources to various peripherals.
- Audio PLL for the audio subsystem.

Power Control

- Main external power supply: $1.8V \pm 5\%$
- Vddcore supply (from PMIC or internal PMU): adjustable from 0.6 V to 1.1 V (including retention mode)
- Analog supply: 1.71-1.89 V
- Five VDDIO supplies (can be shared or independent)
- USB Supply: 3.0-3.6 V
- Reduced power modes:
	- Sleep mode: CPU clock shut down (each CPU independently)
	- Deep_sleep mode: User-selectable configuration via PDSLEEPCFG
	- Deep_powerdown mode: Internal power removed from entire chip except "always-on" domain
	- Each individual SRAM partition can be independently powered-off or put into a lowpower retain mode
	- DSP Domain can be powered-off independently from the rest of the system.
	- Ability to operate the synchronous serial interfaces in sleep or deep-sleep as a slave or USART clocked by the 32 kHz RTC oscillator
	- Wake-up from low-power modes via interrupts from various peripherals including the RTC and the OS/Event timer
- RBB/FBB to provide additional control over power/ performance trade-offs
- Power-On Reset (POR).

Operating characteristics

- Temperature range (ambient): -20 °C to +70 °C
- VDDCORE: 0.7 V 1.155 V
- VDDIO_0/1/2/4: 1.71 V 1.89 V
- VDDIO_3: 1.71 V 3.6 V

The following table provides examples of orderable sample part numbers covered by this data sheet.

Orderable part number table

1. As marked on package

2. 249-pin Fan-out wafer-level package

3. FlexComm6 signals only include CTS/SDA and RTS/SCL and FlexComm12 only includes TXD/SDA and RXD/SCL

4. 141-pin wafer level chip scale package

Device revision number

Package markings for i.MX RT devices consist of 4 sets of identifiers as shown below.

Figure 2. Package markings

- The 1st identifier defines the Part Number and is composed of 11 characters.
- The 2nd and 4th identifiers define the Traceability markings.
- The 3rd identifier defines the Date Code for the week of manufacture is a subset of the standard 5 character format.

The standard date code format is "xYYWW":

- The leading digit represented by "x" can be ignored and "YYWW" indicate the Date Code.
- "YY" represents an encoding of the calendar year (for example, 19 corresponds to year 2019).
- "WW" represents an encoding of the work week within the calendar year (for example, 07 corresponds to work week 7).

Please provide this information to your local NXP representative for further details.

The following figure explains the part number for this device.

Pin 1 Orientation

Figure 3. 141-pin package markings

- The 1st identifier defines the first portion of the Part Number and is composed of 8 characters.
- The 2nd identifier defines the last portion of the Part Number and is composed of 4 characters.
- The 3rd and 5th identifiers define the Traceability markings.
- The 4th identifier defines the Date Code for the week of manufacture is a subset of the standard 8 character format.

The standard date code format is "xxxxYYWW":

- The leading digits represented by "x" can be ignored and "YYWW" indicate the Date Code.
- "YY" represents an encoding of the calendar year (for example, 19 corresponds to year 2019).
- "WW" represents an encoding of the work week within the calendar year (for example, 07 corresponds to work week 7).

Please provide this information to your local NXP representative for further details.

The following figure explains the part number for this device.

Figure 4. Part number diagram

Related Resources

Table of Contents

1 Electrical characteristics

1.1 Chip-level conditions

This section provides the device-level electrical characteristics for the IC. See the following table for a quick reference to the individual tables and sections.

For these charateristics	Topic appears
Absolute maximum voltage and current ratings	Absolute maximum voltage and current ratings
Thermal handling ratings	Thermal handling ratings
Moisture handling ratings	Moisture handling ratings
ESD handling ratings	ESD handling ratings
Thermal characteristics	Thermal characteristics
General operating conditions	General operating conditions
I/O parameters	I/O parameters
Power consumption operating behavior	Power consumption operating behavior

Table 1. i.MX RT500 chip-level conditions

1.1.1 Thermal handling ratings

1. Determined according to JEDEC Standard JESD22-A103, *High Temperature Storage Life*.

2. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

1.1.2 Moisture handling ratings

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

1.1.3 ESD handling ratings

1. Determined according to JS001, *Electrostatic Discharge (ESD) Sensitivity Testing, Human Body Model (HBM) - Component Level*.

2. Determined according to JEDEC Standard JS002, *Electrostatic Discharge (ESD) Sensitivity Testing, Charged Device Model (CDM) - Device Level*.

3. Determined according to JEDEC Standard JESD78, *IC Latch-Up Test*.

1.2 Absolute maximum voltage and current ratings

Caution

Stress beyond those listed under the following table may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolutemaximum-rated conditions for extended periods may affect device reliability.

Table 2. Absolute maximum ratings[1](#page-13-0)

Symbol	Parameter	Conditions	Notes	Min.	Max.	Unit
VDD1V8	1.8 V supply voltage for on- chip analog functions other than the ADC and comparator.		$\overline{2}$	-0.3	1.98	V
VDD1V8_1	1.8 V supply voltage for on- chip digital logic		$\overline{2}$	-0.3	1.98	\vee
VDDCORE	1.1 V input supply for core not used. logic	On-chip regulator LDO_ENABLE ³ $=0.$ Power supplied by an off- chip power management IC (PMIC).	$\overline{2}$	-0.3	1.32	V
VDDIO_0/1/2/4	Supply voltage for GPIO pins		$\overline{2}$	-0.3	1.98	V
VDDIO_3	Supply voltage for GPIO pins		$\overline{2}$	-0.3	3.96	\vee
VDDA_ADC1V8	1.8 V analog supply voltage for ADC and comparator	ä,	$\overline{2}$	-0.3	1.98	V
VDDA_BIAS	Bias voltage for ADC and comparator	÷,	$\overline{2}$	-0.3	1.98	V
VREFP	ADC positive reference voltage	ä,	$\overline{2}$	-0.3	1.98	V
USB1_VDD3V3	USB1 analog 3.3 V supply		$\overline{2}$	-0.3	3.96	\vee
USB1_VBUS ⁴	USB1_VBUS detection			-0.3	5.6	v
MIPI_DSI_VDD11	MIPI DSI 1.1 V PHY input core voltage supply		ä,	-0.3	1.32	\vee
MIPI_DSI_VDD18	MIPI DSI 1.8 V PHY IO input voltage supply	÷.	ä,	-0.3	1.98	\vee
MIPI_DSI_VDDA_CAP	MIPI DSI 1.1 V capacitor output voltage supply			-0.3	1.32	\vee

Table 2. Absolute maximum ratings[1](#page-13-0) (continued)

Symbol	Parameter	Conditions	Notes	Min.	Max.	Unit
I _{DD}	supply current	per supply pin,	5		100	mA
	(FOWLP249)	1.71 $V \leq V_{DD} <$ 1.89 V				
		1.71 $V \le V_{DD}$ < 3.6V				
	supply current	per supply pin,	5		100	mA
	(WCLSP141)	1.71 $V \le V_{DD}$ < 1.89 V				
		1.71 $V \le V_{DD}$ < 3.6V				
I_{SS}		ground current per ground pin,	5		100	mA
	(FOWLP249)	1.71 $V \le V_{DD}$ < 1.89 V				
		1.71 $V \le V_{DD}$ < 3.6V				
		ground current per ground pin,	5	ä,	100	mA
	(WLCSP141)	1.71 $V \le V_{DD}$ < 1.89 V				
		1.71 $V \le V_{DD}$ < 3.6V				
$P_{tot(pack)}$	total power dissipation (per package)	FOWLP 249, based on package heat transfer, not device power consumption	6	÷,	1.86	W
	total power dissipation (per package)	WLCSP141			1.42	W

Table 2. Absolute maximum ratings1 (continued)

1. In accordance with the Absolute Maximum Rating System (IEC 60134). The following applies to the limiting values:

- This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.
- Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted.
- The limiting values are stress ratings only and operating the part at these values is not recommended and proper operation is not guaranteed. The conditions for functional operation are specified in [Table 5.](#page-15-0)
- 2. Maximum/minimum voltage above the maximum operating voltage (see [Table 5\)](#page-15-0) and below ground should be avoided as proper operation cannot be guaranteed and could lead to irrecoverable failure. Failure includes the loss of reliability and shorter lifetime of the device.
- 3. The WLCSP package does not support this signal and only supports an off-chip power management IC.
- 4. On WLCSP package, USB ISP mode is not supported. VBUS pin is not available on the WLCSP package. To detect VBUS connection, user can connect a GPIO pin to the USB connector's VBUS. When a rising edge occurs on the GPIO pin, software should set bit 10 (FORCE_VBUS) and bit 16 (DCON) in the DEVCMDSTAT register.
- 5. The peak current should not exceed the total supply current.
- 6. Determined in accordance to JEDEC JESD51-2A natural convection environment (still air).

1.3 Thermal specifications

1.3.1 Thermal operating requirements

Table 3. Thermal operating requirements

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed maximum T_J. The simplest method to determine T_J is: T_J = T_A + R_{OJA} × chip power dissipation.

1.3.2 Thermal characteristics

The average chip junction temperature, $T_i ({}^{\circ}C)$, can be calculated using the following equation:

 $T_j = T_{amb} + (P_D \times R_{th(j-a)})(1)$

- T_{amb} = ambient temperature (°C),
- $R_{th(i-a)}$ = the package junction-to-ambient thermal resistance (°C/W)
- P_D = sum of internal and I/O power dissipation

The internal power dissipation is the product of I_{DD} and V_{DD} . The I/O power dissipation of the I/O pins is often small and many times can be negligible. However it can be significant in some applications.

Table 4. Thermal resistanc[e1](#page-15-0)

Table 4. Thermal resistance1 (continued)

Symbol	Parameter	Conditions	Max/Min	Unit				
$\mathsf{R}_{\Psi(\mathsf{JT})}$	thermal resistance from junction to package top	JESD51-9, 2s2p, still air	0.2	\degree C/W				
	141 WCLSP Package							
$R_{th(j-a)}$	thermal resistance from junction to ambient	JESD51-9, 2s2p, still air	35.3	\degree C/W				
$R_{\Psi(JT)}$	thermal resistance from junction to package top	JESD51-9, 2s2p, still air	0.1	\degree C/W				

1. Determined in accordance to JEDEC JESD51-2A natural convection environment (still air). Thermal resistance data in this report is solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not meant to predict the performance of a package in an application-specific environment

1.4 General operating conditions

Symbol	Parameter	Conditions	Min.	Typ. ¹	Max.	Unit
	chip digital logic					
VDDCORE $3, 4, 5$	VDDCORE 1.1 V supply voltage required for Power-On	For initial power-on/boot- up only	1.0		\blacksquare	\vee
VDDCORE $3, 4, 5$	Core supply voltage required for Power-On	For initial power-on/ bootup only (High Speed clock - OTP setting - BOOT_CLK_SPEED)	1.13	$\qquad \qquad \blacksquare$	$\overline{}$	\vee
VDDCORE $3, 4, 5, 6,$	Core supply	Retention mode	0.58	0.6	\blacksquare	\vee
7	voltage. On- chip regulator not used. LDO_ENABLE ⁸	Active Mode (M33/DSP/GPU Max Freq $= 60$ MHz, FBB) ⁹	0.7			\vee
	$=0.$ Power supplied by an off-chip power	Active Mode (M33/DSP/GPU Max Freq $= 100$ MHz, FBB)	0.8			\vee
	management IC (PMIC).	Active Mode (M33/DSP/GPU Max Freq $= 192$ MHz, FBB)	0.9	$\overline{}$	\blacksquare	\vee
		Active Mode (M33/DSP/GPU Max Freq = 230 MHz ¹⁰ , FBB)	1.0		\blacksquare	\vee
		ctive Mode (M33/DSP/GPU Max Freq = 250 MHz ¹⁰ , FBB)	1.02			\vee
		Active Mode (M33/DSP/GPU Max Freq = 275 MHz ¹⁰ , FBB)	1.1			\vee
VDDIO_0/1/2/411	supply voltage for GPIO rail		1.71	ä,	1.89	V
VDDIO_3	supply voltage for GPIO rail		1.71		3.6	\vee
VDDA_ADC1V8	1.8 V analog supply voltage for ADC and comparator		1.71		1.89	V
VDDA_BIAS ¹²	Bias for ADC and comparator		1.71	\blacksquare	1.89	\vee
VREFP	ADC positive reference voltage		1.71		1.89	V
USB1_VDD3V3	USB1 analog 3.3 V supply		3.0		3.6	V

Table 5. General operating conditions (continued)

Table 5. General operating conditions (continued)

- 1. Typical ratings are not guaranteed. The values listed are for room temperature (25 °C), nominal supply voltages.
- 2. 1.8 V supply voltage for OTP during active mode. In deep-sleep mode, this pin can be powered off to conserve additional current (~20 uA). VDD1V8_1 must be stable before performing any OTP related functions.
- 3. When LDO_ENABLE is externally tied low, the user must boot at VDDCORE = 1.0 V or higher (Low power/Normal clock mode - OTP setting - BOOT_CLK_SPEED) or VDDCORE = 1.13 V (High Speed clock - OTP setting - BOOT_CLK_SPEED). Thereafter, the VDDCORE can be adjusted to the desired level.
- 4. When LDO_ENABLE is externally tied high, the on-chip regulator to the VDDCORE Core voltage in PMC is set to the default value 1.05 V (Low power/Normal clock mode - OTP setting - BOOT_CLK_SPEED) or 1.13 V (High Speed clock - OTP setting - BOOT_CLK_SPEED). Thereafter, the POWER_SetLdoVoltageForFreq API function can be used to internally configure the on-chip regulator voltage to the VDDCORE.
- 5. When performing any OTP read/write function, the VDDCORE voltage must be set to 1.0 V or higher when LDO ENABLE is externally tied high or low.
- 6. The maximum frequency for the specified VDDCORE voltage is the frequency of the clock after the SYSCPUAHBCLKDIV, DSPCPUCLKDIV, and GPUCLKDIV clock dividers found in "RT500 clock diagram" of the i.MX RT500 Reference Manual. The VDDCORE voltage has to be set according to the chosen M33 CPU, DSP, GPU clock frequency. These limits apply to both the FRO and PLL as clock sources.
- 7. To further minimize power or energy consumption, AN13695: Dynamic Voltage Scaling using PVT Sensor on i.MX RT500 provides details for reducing VDDCORE voltage using the PVT Sensor.
- 8. The WLCSP package does not support this signal and only supports an off-chip power management IC.
- 9. GPU, FlexSPI, TRNG, and CTIMER are not supported on this voltage.
- 10. Although i.MX RT500 is targeted to operate up to 200 MHz for low power operation, it can operate up to 275 MHz; however, there will be an increase in current consumption.
- 11. It is strongly recommended that the default values for PADVRANGE[VDDIO_RANGE0/1/2/4] are changed to 01 to disable the VDDIO Detector in order to reduce current consumption
- 12. VDD_BIAS must be equal to maximum ADC input voltage or maximum comparator input voltage.
- 13. On WLCSP package, USB ISP mode is not supported. VBUS pin is not available on the WLCSP package. To detect VBUS connection, user can connect a GPIO pin to the USB connector's VBUS. When a rising edge occurs on the GPIO pin, software should set bit 10 (FORCE_VBUS) and bit 16 (DCON) in the DEVCMDSTAT register
- 14. The USB PHY provides two options for reporting VBUS valid back to the USB controller:
	- A programmable internal VBUS_VALID comparator (the default option), or
	- An alternate VBUS_VALID_3V detector that will report VBUS valid for voltages above 3 V

USBPHY_USB1_VBUS_DETECTn[VBUSVALID_SEL] selects which option is used. If the VBUS_VALID comparator is used, USBPHY_USB1_VBUS_DETECTn[VBUSVALID_THRESH] determines the threshold voltage for a valid VBUS. The programmable range is 4.0V to 4.4V (default).

- 15. The USB PHY provides two options for reporting VBUS valid back to the USB controller:
	- A programmable internal VBUS_VALID comparator (the default option), or
		- An alternate VBUS_VALID_3V detector that will report VBUS valid for voltages above 3 V

USBPHY_USB1_VBUS_DETECTn[VBUSVALID_SEL] selects which option is used. If the VBUS_VALID_3V detector is used, the detector voltage is not programmable.

16. MIPI DSI 1.1V Digital core minimum voltage is 0.85 V for a limited temperature range of 0 to 70 C.

1. Data in this table is based on FRO trimmed at 96 MHz, main_clk sourced from FRO, FBB, and there are no other faster frequencies in the system.

1.5 Power supply for pins

The following table shows the GPIOs belonging to the specific VDDIO groups and VDD_AO1V8 domain.

VDDIO_0, 1, 2, and 4 supply pins can only be powered from 1.71 V to 1.89 V. The VDDIO_3 supply pin can be powered between 1.71V to 3.6V.

Pin	GPIO pins
VDDIO ₀	PIO0_0 to PIO0_13 (Fail Safe Pads)
	PIO1_11 to PIO1_15 (Fail Safe Pads)
	PIO1_18 to PIO1_29 (High Speed Pads ¹)
	PIO2_14 to PIO2_15 (Fail Safe Pads)
	PIO3_25 to PIO3_29 (Fail Safe Pads)
	PIO4_0 to PIO4_6 (Fail Safe Pads)
	PIO6_27 (Fail Safe Pad)
VDDIO 1	PIO0 14 to PIO0 19 (Fail Safe Pads)
	PIO0_21 to PIO0_25 (Fail Safe Pads)
	PIO0 28 to PIO0 31 (Fail Safe Pads)
	PIO1_0 (Fail Safe Pads)
	PIO1_3 to PIO1_7 (Fail Safe Pads)
	PIO1_9 to PIO1_10 (Fail Safe Pads)
Table continuous on the neutropean	

Table 7. Power supply for pins

Table 7. Power supply for pins (continued)

1. None of the HS pins can be floating. In active, sleep, or deep sleep, the HS pins should be managed via internal pull downs. In Deep Power Down, external pull downs should be used.

1.6 I/O parameters

1.6.1 I/O DC parameters

Tamb = *-*20 *°*C to +70 *°*C, unless otherwise specified. Values tested in production unless otherwise specified.

Table 8. I/O DC characteristics

Symbol	Parameter	Conditions	Notes	Min.	Typ	Max.	Unit
I_{IH}	High-level input voltage	$VI = VDDIO$; on- chip pull-down resistor disabled.	\blacksquare	-1	0.5	$\mathbf{1}$	V
		1.71 V \leq VDDIO < 1.89 V					
		$VI = VDDIO_x;$ on-chip pull-down resistor disabled.		-1	0.5	$\mathbf{1}$	V
		$3.0 V \leq VDDIO <$ 3.6V					
I_{IN}	Input leakage	V_{IL} < VI < VDDIO	5	\blacksquare	\blacksquare	\blacksquare	μA
	current near V_{IL} threshold, Fail-Safe	$1.71 V \leq VDDIO$ < 1.89 V			-2.5	-5.0	μA
	GPIO only	$VDDIO = 3.0 V$	\blacksquare		-2.2	-4.4	μA
	$VDDIO = 3.3 V$	÷,		-2.0	-4.0	μA	
		$VDDIO = 3.6 V$	\blacksquare		-1.9	-3.8	μA
				High-Speed GPIO pins, Input characteristics 4			
V_{IH}	High-level input voltage	1.71 V \leq VDDIO < 1.89 V		0.7 x VDDIO		$VDDIO + 0.3$	V
		3.0 V \leq VDDIO \leq 3.6 V		0.7 x VDDIO		$VDDIO + 0.3$	V
V_{IL}	Low-level input voltage	1.71 V \leq VDDIO < 1.89 V		-0.3	\blacksquare	0.3 x VDDIO	V
		3.0 V \leq VDDIO \leq 3.6 V		-0.3		0.3 x VDDIO	\vee
V_{hys}	input hysteresis	1.71 $V \leq VDDIO$ < 1.89 V	$\mathbf{3}$	0.06 x VDDIO	$\qquad \qquad \blacksquare$		V
	voltage	3.0 V \le VDDIO \le 3.6 V	3	0.06 x VDDIO	$\overline{}$		v
I_{IL}	Low-level input voltage	$VI = 0 V;$ on-chip pull-up resistor disabled.		-1		1	μA
		1.71 V \leq VDDIO < 1.89 V					
		$VI = 0 V;$ on-chip pull-up resistor disabled.		-1		$\mathbf{1}$	μA
		$3.0 V \leq VDDIO <$ 3.6 V					
Īщ	High-level input voltage	$VI = VDDIO$; on- chip pull-down resistor disabled.		-1	0.5	$\mathbf{1}$	μA

Table 8. I/O DC characteristics (continued)

Symbol	Parameter	Conditions	Notes	Min.	Typ $\mathbf{1}$	Max.	Unit
		1.71 V \leq VDDIO < 1.89 V					
		$VI = VDDIO_x;$ on-chip pull-down resistor disabled.		-1	0.5	1	μA
		$3.0 V \leq VDDIO <$ 3.6 V					
				Fail-Safe and High-Speed GPIO pins and PMIC I2C pins, output characteristics			
V_{OH}	HIGH-level	$IOH = -2.9 mA;$		0.8 x VDDIO			V
	output voltage (Normal drive)	$1.71 V \leq VDDIO$ < 1.89 V					
		$IOH = -4 mA;$		0.8 x VDDIO	ä,		\vee
		3.0 V \le VDDIO \le 3.6V					
V_{OH}	HIGH-level	$IOH = -5.8 mA;$		0.8 x VDDIO			\vee
output voltage (Full drive)	1.71 V \leq VDDIO < 1.89 V						
		$IOH = -8 mA;$		0.8 x VDDIO			\vee
		3.0 V \leq VDDIO \leq 3.6V					
V_{OL}	LOW-level	$IOL = 2.9 mA;$			$\overline{}$	0.2 x VDDIO	\vee
	output voltage (Normal Drive)	1.71 V \leq VDDIO < 1.89 V					
		$IOL = 4 mA;$		$\overline{}$	٠	0.2 x VDDIO	\vee
		3.0 V \leq VDDIO \leq 3.6V					
	LOW-level	$IOL = 5.8 mA;$		$\overline{}$	$\qquad \qquad \blacksquare$	0.2 x VDDIO	V
	output voltage (Full Drive)	1.71 V \leq VDDIO < 1.89 V					
		$IOL = 8 mA;$			$\qquad \qquad \blacksquare$	0.2 x VDDIO	V
		3.0 V \leq VDDIO \leq 3.6 V					
						Fail-Safe and High-Speed GPIO pins and PMIC I2C pins, weak input pull-up/pull-down characteristics	
I_{pd}	pull-down	$V_1 = 1.8 V$		34	$\overline{}$	180	μA
	current	$V_1 = 3.6 V$	6	72	-	180	μA
I_{pu}	pull-up current $V_1 = 0$ V			-34	$\overline{}$	-180	μA
R_{pd}	pull-down resistance			20	$\overline{}$	50	kΩ
R_{pu}	pull-up resistance			20	\overline{a}	50	kΩ

Table 8. I/O DC characteristics (continued)

1. Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltage.

Electrical characteristics

- 2. PMIC mode pins are dedicated outputs; they are hard wired to normal drive, no input buffer, no pull ups or pull downs, and no slew rate control.
- 3. Guaranteed by design, not tested in production.
- 4. Fail-Safe pins are intended for VDDIO domains that are powered down. Fail-Safe pins do not have diodes to VDDIO. The fail-safe condition only exists when VDDIO = 0 V. High-Speed pins have diodes to VDDIO, so they are not fail-safe. The High-Speed pins (PIO1_18 to PIO1_29, PIO1_30 to PIO1_31, PIO2_0 to PIO2_8, PIO3_8 to PIO3_18, PIO4_11 to PIO4_17, and PIO5_15 to PIO5_18) share all VDDIO domains with Fail-Safe pins, except VDDIO_3.
- 5. The value of any series resistance on a Fail-Safe pin must be limited to ensure that the maximum VIL value can be satisfied when the pin is switched from high to low. Use Rmax = VIL / IIN to calculate the maximum allowed series resistance.
- 6. Based on characterization. Not tested in production.

1.7 Power consumption operating behavior

NOTE

- For the lowest power consumption, use the lowest SRAM partition number.
- To further minimize power or energy consumption in Active Mode (Table 9, [Table 10](#page-24-0), and [Table 11](#page-24-0),), AN13695: Dynamic Voltage Scaling using PVT Sensor on i.MX RT500 provides details for reducing VDDCORE voltage using the PVT Sensor.

Tamb = *-*20 *°*C to +70 *°*C, unless otherwise specified.

Table 9. Power consumption in active mode

- 1. Typical ratings are not quaranteed. Typical values listed are at room temperature (25 °C). VDD AO1V8 = VDD1V8 = VDDIO $0/1/2/3/4 =$ VDDA $ADC1V8 = 1.8$ V. VDDA BIAS = VREFP = 1.8 V. USB1 VDD3V3 = 3.3
- 2. Characterized through bench measurements using typical samples.
- 3. Compiler settings: IAR C/C++ Compiler for Arm ver 8.40.1. High, Speed, No Size Constraints. The optimization level is Low, Balanced.
- 4. Based on the power API library from the SDK software package available on nxp.com
- 5. The 'enhanced while(1)' loops through several LDR/STR instructions, but forces the core to fetch every instruction from the memory, so the current measurement is more realistic.
- 6. SRAM partition 30 represents the worst case partition.
- 7. FRO clock source, FBB enabled

Tamb = *-*20 *°*C to +70 *°*C, unless otherwise specified.

Table 10. Power consumption in active mode

- 1. Typical ratings are not guaranteed. Typical values listed are at room temperature (25 °C). VDD_AO1V8 = VDD1V8 = VDDIO_0/1/2/3/4 = VDDA_ADC1V8 = 1.8 V. VDDA_BIAS = VREFP = 1.8 V. USB1_VDD3V3 = 3.3 V
- 2. Characterized through bench measurements using typical samples.
- 3. Compiler settings: IAR C/C++ Compiler for Arm ver 8.40. High Speed, No Size constraints. The optimization level is Low, Balanced.
- 4. Based on the power API library from the SDK software package available on nxp.com
- 5. SRAM partition 30 represents the worst case partition.

Tamb = *-*20 *°*C to +70 *°*C, unless otherwise specified.

Table 11. Power consumption in active mode

- 1. Typical ratings are not guaranteed. Typical values listed are at room temperature (25 °C). VDD_AO1V8 = VDD1V8 = VDDIO_0/1/2/3/4 = VDDA_ADC1V8 = 1.8 V. VDDA_BIAS = VREFP = 1.8 V. USB1_VDD3V3 = 3.3 V
- 2. Characterized through bench measurements using typical samples.
- 3. Compiler settings: IAR C/C++ Compiler for Arm ver 8.40. High Speed, No Size constraints. The optimization level is Low, Balanced.
- 4. SRAM partitions 30 and 31 represent the worst case partitions. The Fusion F1 DSP requires DRAM and IRAM in different partitions. DSP_DRAM is in partition 30, DSP_IRAM is in partition 31.
- 5. Based on the power API library from the SDK software package available on nxp.com
- 6. PLL clock source, FBB enabled

Table 12. Power consumption in sleep mode

1. 256 KB SRAM, internal LDO enabled

- 2. All peripheral clocks gated
- 3. PLL disabled

4. FRO used as clock source

5. IAR C/C++ Compiler for Arm ver 8.4.2.1.236

Tamb = *-*20 *°*C to +70 *°*C, unless otherwise specified.

Table 13. Power consumption in deep sleep mode

1. Typical ratings are not guaranteed. Typical values listed are at room temperature (25 °C). All power supplies = 1.8 V, except USB1_VDD3V3=3.3 V

2. Characterized through bench measurements using typical samples.

3. Tested in production

4. VDDCORE = 0.6 V, RBB Enabled

5. Before and After Max value based on Date Code 2225.

Tamb = *-*20 *°*C to +70 *°*C, unless otherwise specified.

Symbol	Paramet er	Conditions	Min	Typ ¹ , ²	Max	Unit
VDD_AO1V8	supply current	Deep-sleep mode; SRAM (128 KB) powered, Internal LDO disabled. Array On, Periphery Off		0.60		μA
VDDIO_0	supply current	Deep-sleep mode; SRAM (128 KB) powered, Internal LDO disabled. Array On, Periphery Off		1.0		μA
$IVDDIO_1$	supply current	Deep-sleep mode; SRAM (128 KB) powered, Internal LDO disabled. Array On, Periphery Off		0.8		μA
VDDIO_2	supply current	Deep-sleep mode; SRAM (128 KB) powered, Internal LDO disabled. Array On, Periphery Off		0.26		μA
$IVDDIO_3$	supply current	Deep-sleep mode; SRAM (128 KB) powered, Internal LDO disabled. Array On, Periphery Off		0.6		μA
$IVDDIO_4$	supply current	Deep-sleep mode; SRAM (128 KB) powered, Internal LDO disabled. Array On, Periphery Off		0.26		μA
$IVDD1V8_1$	supply current	Deep-sleep mode; SRAM (128 KB) powered, Internal LDO disabled. Array On, Periphery Off		0.14		μA
I VREFP	supply current	Deep-sleep mode; SRAM (128 KB) powered, Internal LDO disabled. Array On, Periphery Off		0.02		μA
IUSB1 VDD3V3	supply current	Deep-sleep mode; SRAM (128 KB) powered, Internal LDO disabled. Array On, Periphery Off		1.10		μA
MIPI DSI VDD18	supply current	Deep-sleep mode; SRAM (128 KB) powered, Internal LDO disabled. Array On, Periphery Off		0.12		μA
MIPI_DSI_VDD11	supply current	Deep-sleep mode; SRAM (128 KB) powered, Internal		0.15		μA
		LDO disabled. Array On, Periphery Off				
VDDA_ADC_1V8	supply current	Deep-sleep mode; SRAM (128 KB) powered, Internal		\overline{c}		μA
		LDO disabled. Array On, Periphery Off				
VDDA_BIAS	supply current	Deep-sleep mode; SRAM (128 KB) powered, Internal		30		nA
		LDO disabled. Array On, Periphery Off				

Table 14. Power consumption in deep sleep mode

1. Typical ratings are not guaranteed. Typical values listed are at room temperature (25 °C). All power supplies = 1.8 V, except USB1_VDD3V3=3.3 V

2. Characterized through bench measurements using typical samples.

Tamb = *-*20 *°*C to +70 *°*C, unless otherwise specified.

Table 15. Power consumption in deep power-down mode1 and full deep power-down modes

1. Deep Power-down mode is not supported in the WLCSP package.

2. Typical ratings are not guaranteed. Typical values listed are at room temperature (25 °C). All power supplies = 1.8 V, except USB1_VDD3V3=3.3V

3. Characterized through bench measurements using typical samples.

1.8 CoreMark data

Parameters	Conditions	Notes	Typ. ¹ , 2^{3}	Unit						
	ARM Cortex-M33 in active mode									
CoreMark Score	CoreMark code executed from $SRAM$; HCLK = 12 MHz		3.85	(Iterations/s) / MHz						
	HCLK = 24 MHz		3.85	(Iterations/s) / MHz						
	$HCLK = 48 MHz$		3.85	(Iterations/s) / MHz						
	HCLK = 96 MHz	5	3.85	(Iterations/s) / MHz						
	HCLK = 192 MHz	5	3.85	(Iterations/s) / MHz						

Table 16. Coremark data

1. Characterized through bench measurements using typical samples.

2. Compiler settings: IAR C/C++ Compiler for Arm ver 8.22.2, optimization level 3, optimized for time on.

3. VDD_AO1V8 = VDD1V8 = VDDIO_0/1/2/3/4 = VDDA_ADC1V8 = VDDA_BIAS = VREFP = 1.8 V. USB1_VDD3V3 = 3.3 V

4. Clock source FRO. PLL disabled

5. Clock source external clock to XTALIN (bypass mode). PLL enabled.

2 System power and clocks

2.1 Power sequence

Following power-on sequence should be followed when using the internal LDO on the i.MX RT500:

- 1. VDD_AO1V8, VDD1V8, and VDD1V8_1 pins should be powered first. There is no power sequence requirement between powering the VDD_AO1V8 and VDD1V8 pins.
- 2. VDDA_ADC1V8, VDDA_BIAS, and VREFP can be powered concurrently with VDD_AO1V8 and VDD1V8 or later
- 3. VDDIO_x pins can be powered concurrently with VDD_AO1V8 and VDD1V8 if these pins are 1.8 V range or later if these pins are 3.3 V range. If the VDDIO_x is not powered concurrently with the VDD1V8, the delta voltage between VDDIO_x and VDD1V8 must be 1.89 V or less.

The VDDCORE pin will be supplied from the internal LDO and the LDO is powered from the VDD1V8. An external capacitor (4.7 uF) must be connected on the VDDCORE pin. USB1_VDD3V3 can be powered at any time, independent of the other supplies.

Following power-on sequence should be followed when using an external PMIC or external IC to drive the VDDCORE pin (internal LDO is disabled, see timing diagram below):

- 1. VDD_AO1V8, VDD1V8, and VDD1V8_1 pins should be powered first. There is no power sequence requirement between powering the VDD_AO1V8 and VDD1V8 pins.
- 2. VDDA_ADC1V8, VDDA_BIAS, and VREFP can be powered concurrently with VDD_AO1V8 and VDD1V8 or later.
- 3. VDDIO_x pins can be powered concurrently with VDD1V8 if these pins are 1.8 V range or later if these pins are 3.3 V range. If the VDDIO x is not powered concurrently with the VDD1V8, the delta voltage between VDDIO_x and VDD1V8 must be 1.89 V or less.
- 4. Power up the VDDCORE. The external RESETN should be held low until VDDCORE is valid in the timing diagram.VDDCORE should not be ramped up until after all the other supplies have completed ramp up.

USB1_VDD3V3 can be powered at any time, independent of the other supplies.

Sequence of operations is handled internally so there is no specific timing requirement between the supplies. The time delays caused by any of the bypass capacitors will have no effect on the operation of the part. The internal POR detectors on VDD_AO1V8, VDD1V8 pins, and the Low Voltage Detector on VDDCORE pin, require a fall time of at least 10us (preliminary) to trigger. There is no restriction on the rise time, except for the sequencing defined above.

Symbol	Timing Parameter	Description	Min.	Max.	Unit
A	VDDIO_x valid to VDDCORE valid	The delay from when the IO pad voltages become valid to core voltage valid	10		μs
B	VDDCORE valid to De-assertion of RESETN	The delay from when the VDD core is valid to when the RESETN can be released	20		μs
AA	Mode pin valid	When the mode pins becomes valid. On power- on, the mode pins are reset to 00 and are controlled via a		\overline{c}	μs

Table 17. Power-on characteristics

Table 17. Power-on characteristics

Figure 5. Power-up ramp

2.2 LVD operating requirements

Table 18. VDDCORE supply LVD operating requirments

Symbol	Description	Min.	Typ.	Max.	Unit
VLVD_POR	Rising low-voltage detection on POR	1			V
VLVD_HYS	Low-voltage detection hysteresis	$\qquad \qquad \blacksquare$	20	$\overline{}$	mV
			Rising low-voltage detect ¹		
V_{LVD_R0}	* Level 0 rising (LVDCORELVL=0)	717		763	mV
VLVD_R1	* Level 1 rising (LVDCORELVL=1)	732	\blacksquare	778	mV
V_{LVD_R2}	* Level 2 rising (LVDCORELVL=2)	747		793	mV
$VLVD_R3$	* Level 3 rising (LVDCORELVL=3)	762	$\overline{}$	808	mV
V_{LVD_R4}	* Level 4 rising (LVDCORELVL=4)	776		824	mV
V_{LVD_R5}	* Level 5 rising (LVDCORELVL=5)	791		839	mV
V_{LVD_R6}	* Level 6 rising (LVDCORELVL=6)	806		854	mV
V_{LVD_R7}	* Level 7 rising (LVDCORELVL=7)	820		870	mV
V_{LVD_R8}	* Level 8 rising (LVDCORELVL=8)	835	\sim	885	mV
V_{LVD_R9}	* Level 9 rising (LVDCORELVL=9)	850		900	mV
V_{LVD_R10}	* Level 10 rising (LVDCORELVL=10	864		916	mV
V_{LVD_R11}	* Level 11 rising (LVDCORELVL=11	879	$\overline{}$	931	mV
V_{LVD_R12}	* Level 12 rising (LVDCORELVL=12	894		946	mV
$VLVD_R13$	* Level 13 rising (LVDCORELVL=13	908		962	mV
V_{LVD_R14}	* Level 14 rising (LVDCORELVL=14	923		977	mV
V_{LVD_R15}	* Level 15 rising (LVDCORELVL=15	938		992	mV

Table 18. VDDCORE supply LVD operating requirments (continued)

1. The Min. and Max. values include hysteresis, voltage reference and comparator variance.

2.3 Free-running oscillator FRO-250M specifications

Table 19. FRO-250M specifications1

1. FBB is enabled. The logic in VDDCORE domain may require higher VDDCORE voltage to be clocked at 250 MHz. FRO divider options 2/4/8 can be used to reduce the FRO frequency to the VDDCORE logic. See [General operating](#page-15-0) [conditions](#page-15-0) for specific Max Freq vs VDDCORE limits.

2. Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

NOTE

Any divided versions of the FRO that are not being used anywhere should be turned off to save power.

2.4 Free-running oscillator FRO-192/96M specifications

Table 20. FRO-192M specifications1

1. FBB is enabled. The logic in VDDCORE domain may require higher VDDCORE voltage to be clocked at 192 MHz. FRO divider options 2/4/8 can be used to reduce the FRO frequency to the VDDCORE logic. See [General operating](#page-15-0) [conditions](#page-15-0) for specific Max Freq vs VDDCORE limits.
- 2. Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.
- 3. Results may vary based on application board and SMT profile. NXP recommends customers perform application-level FRO trim to attain best FRO accuracy.
- 4. Based on characterization. Not tested in production.

NOTE

Any divided versions of the FRO that are not being used anywhere should be turned off to save power.

Table 21. FRO-96M specifications1

Symbol	Characteristic	Min.	Type ²	Max.	Unit
$f_{\mathsf{f} \mathsf{ro96m}}$	FRO-96M frequency (nominal)		96		MHz
$\Delta f_{\rm fro96m}$	Frequency deviation • 1T trim (Open loop)			$\pm 2.5^3$	$\%$
	• User trim close loop (Closed loop) using accurate clk src			1	$\%$
t _{startup}	Start-up time		120		μs
jit _{cyc}	Cycle to cycle jitter		180		ps
I_{fro96m}	Current consumption (VDDCORE)		23		μA
I _{fro96m}	Current consumption (VDD1V8)		80		μA
t_{setting}^4	Frequency settling time for 1% accuracy			42	μs
t_{setting}^4	Frequency settling time for 3% accuracy				μs
V_{min}	Minimum voltage	0.7			v

1. FBB is enabled. The logic in VDDCORE domain may require higher VDDCORE voltage to be clocked at 96 MHz. FRO divider options 2/4/8 can be used to reduce the FRO frequency to the VDDCORE logic. See [General operating](#page-15-0) [conditions](#page-15-0) for specific Max Freq vs VDDCORE limits.

2. Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages

- 3. Results may vary based on application board and SMT profile. NXP recommends customers perform application-level FRO trim to attain best FRO accuracy.
- 4. Based on characterization. Not tested in production.

2.5 Main/System and Audio PLLs

Table 22. Main/system and audio PLL electrical parameters

Parameter	Min.	Typ.	Max.	Unit
Period jitter (p2p)		50		ps
PFD period jitter		100		ps
Duty cycle	45		55	$\%$
V_{min}	0.			

Table 22. Main/system and audio PLL electrical parameters (continued)

1. See [General operating conditions](#page-15-0) for specific Max Freq vs VDDCORE limits.

2.6 Crystal oscillator

 T_{amb} = -20 [°]C to +70 [°]C; 1.71 V ≤ V_{DD1V8} ≤ 1.89 V.¹

Table 23. Crystal oscillator characteristics

Symbol	Parameter	Conditions	Min.	Typ. ²	Max.	Unit
$\mathsf{f}_{\mathsf{range}}$	oscillator frequency range ³		4		32	MHz
RF	Crystal	low-power mode				ΜΩ
	feedback resistor4 ⁴	high-gain mode		1		ΜΩ
ESR	Equivalent series resistance				80	Ω
C_X	XTALIN load capacitance ⁵	Crystal oscillator				pF
C_Y	XTALOUT load capacitance ⁵	Crystal oscillator				pF
R_S	Series resistor ⁵	Crystal oscillator		0		$k\Omega$
V _{XTALIN}	XTALIN input voltage	External oscillator ⁶	$\mathbf 0$		VDD ₁₈	\vee
V_{IH}	XTALIN input high voltage	External oscillator ⁶	VDD1V8-0.5		VDD1V8	\vee
V_{IL}	XTALIN input low voltage	External oscillator ⁶	VSS		0.5	\vee
t _{DC_XTALIN}	XTALIN input clock duty cycle	External oscillator ⁶	40	50	60	$\%$

1. Parameters are valid over operating temperature range unless otherwise specified.

2. Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

- 3. Operating range of oscillator. Practical range is 5 MHz to 26 MHz, based on PLL requirements.
- 4. Feedback resistor only required for High Gain Mode (default). Select Low Power Mode by setting

CLKCTL0_SYSOSCCTL0[LP_ENABLE] = 1.

5. See [XTAL oscillator](#page-87-0)

6. Bypass mode uses an external square wave oscillator connected to XTALIN with XTALOUT floating. Set BYPASS_ENABLE in CLKCTL0_SYSOSCCTL0 to select the external clock input.

2.7 RTC oscillator

See [RTC oscillator](#page-85-0) for connecting the RTC oscillator to an external clock source.

 T_{amb} = -20 [°]C to +70 [°]C; 1.71 *≤* V_{DD}_{AO1V8} *≤* 1.89

1. Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages

2. Proper PCB layout procedures must be followed to achieve specifications. See RTC oscillator

3. To bypass with an external source, apply an input square wave on RTCXIN and float RTCXOUT. VIH and VIL levels do not apply to this input.

2.8 External Clock Input (CLKIN) pin

 T_{amb} = -20 °C to +70 °C; 1.71 ≤ VDDIO ≤ 1.89 V

Symbol	Parameter	Conditions	Min.	Typ.	Max	Unit
V_{IL}	CLKIN input low external voltage	oscillator ¹	√SS		0.5	

Table 24. Dynamic characteristic: CLKIN (continued)

1. Connect an external square wave oscillator to the pin configured as the CLKIN input. Write CLKCTL0_SYSOSCBYPASS[SEL]=0b001 to select CLKIN as the external clock input.

2.9 External Master Clock (MCLK) pin

 T_{amb} = -20 °C to +70 °C; 1.71 ≤ VDDIO ≤ 1.89 V

Table 25. Dynamic characteristic: MCLK

2.10 Internal low-power oscillator (1 MHz)

The LPOSC is trimmed to $\pm 10\%$ accuracy over the entire voltage and temperature range.

 T_{amb} = -20 [°]C to +70 [°]C; 1.71 ≤ V_{DD} ≤ 1.89 V

Table 26. LPOSC characteristics

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
$I_{\text{osc}}(RC)$	LPOSC clock frequency	$\overline{}$	0.9		. .	MHz
^L startup	Start-up time	$\overline{}$	$\overline{}$	105	$\overline{}$	μs

1. Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

3 System modules

3.1 Reset timing parameters

The following figure shows the reset timing and Table 27 lists the timing parameters.

Figure 6. Reset timing diagram

3.2 Serial Wire Debug (SWD) timing specifications

Symbol	Description	Min.	Max.	Unit
J1	SWD_CLK frequency of operation	0	25	MHz
J2	SWD_CLK cycle period	1000/J1		ns
J3	SWD_CLK clock pulse width • Serial wire debug	20		ns
J4	SWD CLK rise and fall times		3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10		ns
J10	SWD_DIO input data hold time after SWD_CLK rise	Ω		ns
J11	SWD_CLK high to SWD_DIO data valid		37	ns
J12	SWD_CLK high to SWD_DIO high-Z	2		ns

Table 28. SWD timing specifications

Figure 7. Serial wire clock input timing

Figure 8. Serial wire data timing

3.3 JTAG timing specifications

Table 29. JTAG timing specifications

1. For details about JTAG/Boundary Scan, see i.MX RT500 Reference Manual.

Figure 9. Test clock input timing

Figure 10. Boundary scan (JTAG) timing

System modules

Figure 11. Test Access Port timing

Figure 12. TRST (active-low) timing

3.4 Wake-up process

 V_{DD} = 1.8 V;T_{amb} = 25 °C; using FRO as the system clock.

Symbol	Parameter	Conditions	Notes	Min.	Typ. ¹	Max.	Unit
		from deep- sleep mode, using PMIC_IRQ_N	2,3	-	120	$\overline{}$	μs
t _{wake}	wake-up time	from full deep power-down mode, using RESETN	4		8.64	٠	ms
		from full deep power-down mode, using PMIC_IRQ_N	$\overline{4}$	٠	8.64	\blacksquare	ms

Table 30. Typical wake-up times from low power modes (continued)

1. Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.

2. The wake-up time measured is the time between when a GPIO input pin is triggered to wake the device up from the low power modes and from when a GPIO output pin is set in the interrupt service routine (ISR) wake-up handler.

- 3. FRO disabled in Deep Sleep and re-enabled upon wake-up , all peripherals including the PLL are disabled. VDDCORE (Active 1V/ Deep Sleep 0.6V), 5 MB SRAM retained.
- 4. Wake up from deep power-down causes the part to go through entire reset process. The wake-up time measured is the time between when the Wake-Up pin is triggered to wake the device up and when a GPIO output pin is set in the reset handler.

4 External memory interfaces

4.1 FlexSPI Flash interface

Table 31. FlexSPI ipg_clk_sfck maximum frequency vs. VDDCORE1

FlexSPI frequency	Min.	Typ.	Max.	Unit
VDDCORE=0.8V			192	MHz
VDDCORE=0.9V			332	MHz
VDDCORE=1.0 V	_		360	MHz
VDDCORE=1.1V			400	MHz

1. Applies only to RX Clock Source = 3 with external DQS. SCLK maximum frequency in this mode is 200 MHz

Tamb = -20 C to +70 C, VDDIO_x = 1.71 V to 1.89V; CL = 5 pF balanced loading on all pins; Full Drive Mode on all pins, Input slew = 1 ns, SLEW setting = standard mode for all pins; Parameters sampled at the 50 % level of the rising or falling edge.

In FlexSPI DDR mode, serial root clock ipg_clk_sfck is twice the frequency of SCLK output clock to memory. ipg_clk_sfck and SCLK frequencies are the same SDR mode.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
SDR mode						
f_{clk}	clock frequency	Transmit			200	MHz
		RX clock source = 0			60	MHz
		RX clock source = 1			116	MHz
		RX clock source = 3			200	MHz
t _{DS}	data set-up time	RX clock source = 0 (internal dummy read strobe and loopbacked internally)	6			ns
		RX clock source = 1 (internal dummy read strobe and loopbacked from DQS pad)	$\mathbf{1}$			ns
		source = 3 (external DQS, Flash provides read strobe)	0		0.6	ns
t _{DH}	data hold time	RX clock source = 0 (internal dummy read strobe and loopbacked internally)	1			ns
		RX clock source = 1 (internal dummy read strobe and loopbacked from DQS pad)	$\mathbf 0$			ns
		source = 3 (external DQS, Flash provides read strobe)	0			ns
$t_{V(Q)}$	data output valid time		Ω		3	ns
	DDR Mode (with and without DQS)					
f_{clk}	clock frequency	Transmit			200	MHz
		RX clock source = 0			30	MHz
		RX clock source = 1			58	MHz
		RX clock source $=$ 3, with external DQS.			200	MHz
t _{DS}	data set-up time	RX clock source = 0 (internal dummy read strobe and loopbacked internally)	6			ns

Table 32. Dynamic characteristics: FlexSPI flash interface[1](#page-46-0)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
		RX clock source = 1 (internal dummy read strobe and loopbacked from DQS pad)				ns
		source = 3 (external DQS, Flash provides read strobe)	Ω		0.6	ns
t_{DH}	data hold time	RX clock source = 0 (internal dummy read strobe and loopbacked internally)	1			ns
		RX clock source = 1 (internal dummy read strobe and loopbacked from DQS pad)	Ω			ns
		source = 3 (external DQS, Flash provides read strobe)	Ω			ns
tv(Q)	data output valid time		0			ns

Table 32. Dynamic characteristics: FlexSPI flash interface1 (continued)

1. Based on simulation; not tested in production.

Following are the FlexSPI timing diagrams for SDR and DDR input and output timing modes.

External memory interfaces

Figure 20. DDR mode (output timing, mode 3)

5 Display and graphics

5.1 LCDIF

 T_{amb} = -20 °C to 70 °C; V_{DD} = 1.8 V; C_L = 30 pF. Simulated values.

Table 33. LCDIF characteristics

Svmbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$\mathsf{r}_{\mathsf{clk}}$	∣clock frequencγ	on pin LCD DCLK		-	60	MHz
(Q)	I data output valid time	on all LCD output pins	0.3		4.5	ns

5.2 MIPI DSI timing

The i.MX RT500 conforms to the MIPI D-PHY electrical specifications MIPI DSI Version 1.01 and D-PHY specification Rev. 1.0 (and also DPI version 2.0, DBI version 2.0, DSC version 1.0a at protocol layer) for MIPI display port x2 lanes.

5.3 Flexible IO controller (FlexIO)

Table 34. FlexIO timing specifications

1. Assumes pins muxed on same VDD_IO domain with same load

6 Analog characteristics

6.1 12-bit ADC characteristics

 T_{amb} = -20 °C to +70 °C; VDDA_ADC1V8 = VDDA_BIAS = VREFP = 1.8 V; V_{SSA} = VREFN = GND. ADC calibrated at T_{amb} $= 25 \degree C$.

Symbol	Parameter	Conditions	Notes	Min	Typ ¹	Max	Unit
VADIN	analog input voltage		See Figure 22	VREFN		VREF P	\vee
$f_{\text{clk}(ADC)}$	ADC clock frequency					60	MHz
$ _{f_s}$	sampling frequency			$\overline{}$	ä,	1	Msamples/s
C_{samples}	Sample cycles			3.5	\blacksquare	131.5	
$\mathsf{C}_{\mathsf{compare}}$	Fixed compare cycles			÷,	17.5		cycles
$C_{\text{conversion}}$	Conversion cycles				$C_{conversion} = C_{samples} + C_{compare}$		cycles
CADIN	Analog input capacitance		² , See Figure 22		4.5		pF
RADIN	Input resistance		See Figure 22		500		Ω
RAS	Analog source resistance		3	ä,	÷,	5	$k\Omega$
$\vert E_{\mathsf{D}}$	differential linearity error		4, 5	$\qquad \qquad \blacksquare$	$< \pm 1$	\blacksquare	LSB
$E_{I(adj)}$	integral non- linearity	$f_{\text{clk}(ADC)} = 22$ MHz Sample Time select (STS bit in CMDH $register) = 0$	4, 6		$< \pm 1.1$		LSB
E_{O}	offset error		4, 7	$\overline{}$	±0.01	±0.02	%FSV
E_G	Gain error		4, 8		-0.16	-0.56	%FSV

Table 35. 12-bit ADC static characteristics

1. Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

2. CADIN represents the external capacitance on the analog input channel for sampling speeds of 1.0 Msamples/s. No parasitic capacitances included.

- 3. This resistance is external to the MCU. To achieve the best results, the analog source resistance must be kept as low possible. The results in this data sheet were derived from a system that had less than 15 Ω analog source resistance. See [Figure 1](#page-51-0)
- 4. Based on characterization; not tested in production.
- 5. The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 1.
- 6. The integral non-linearity $(E_{I(adi)}$) is the peak difference between the center of the steps of the actual and the ideal transfer curve after appropriate adjustment of gain and offset errors. See Figure 1.
- 7. The offset error (E_0) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the ideal curve. See Figure 1.
- 8. The gain error (EG) is the difference between the straight-line fitting the actual transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See [Figure 1](#page-51-0).

Analog characteristics

- (1) Example of an actual transfer curve.
- (2) The ideal transfer curve.
- (3) Differential linearity error (E_D) .
- (4) Integral non-linearity $(E_{I(adj)}$).
- (5) Center of a step of the actual transfer curve.

6.1.1 ADC input impedance

The following figure shows the ADC input impedance for this device.

Figure 22. ADC input impedance

6.2 ADC temperature sensor

Table 36. Temperature sensor static and dynamic characteristics (VDDA_BIAS = 1.8 V, All other supplies = 1.8 V)

Symbol	Parameter	Conditions	Notes	Min	тур	Max	Unit
DT _{sen}	sensor Itemperature accuracy	$\mathsf{T}_{\mathsf{amb}}$ = -20 °C $ $ 1 Ito 70 $^{\circ}$ C			\mathcal{P}	2.77	\circ ◡

1. Absolute temperature accuracy. Based on characterization. Not tested in production

Table 37. Temperature sensor Linear-Least-Square (LLS) fit parameters (VDDA_BIAS = 1.8 V, All other supplies = 1.8 V)

Fit parameter	Conditions	Notes	Min	Typ	Max	Unit
LLS slope	T_{amb} = -20 °C to $1, 2$ 70 °C			-1.5738		mV ^o C
LLS intercept at $\text{Tamb} = -20 \degree C$ 1, 2 10° C	$\overline{}$ to 70 °C		$\overline{}$	809.55		mV
LLS intercept at $ Tamb = -20$ °C 1, 2 25 °C	Ito 70 $^{\circ}$ C			770.4	-	mV

1. Based on characterization, Not tested in production.

2. Equation: Temp = 25 - ((Vtemp -Vtemp25)/m) Where: VTEMP is the voltage of the temperature sensor channel at the ambient temperature VTEMP is the voltage of the temperature sensor channel at 25°C and VDD = 1.8 V m is the voltage versus temperature slope in V/°C.

Figure 23. Average Vo @ 1.8V supply

6.3 Comparator characteristics

 T_{amb} = -20 C to +70 C; V_{DD} = 1.8 V.

Table 38. Comparator characteristics

Symbol	Parameter	Conditions	Notes	Min.	Typ. ¹	Max.	Unit			
	Static characteristics									
Voffset	offset voltage	$V_{IC} = 0.1 V; V_{DD} =$ 1.8V			6		mV			
		$V_{IC} = 0.9 V$; $V_{DD} =$ 1.8V			$\overline{7}$		mV			
		$V_{IC} = 1.7 V; V_{DD} =$ 1.8V			9		mV			
			Dynamic characteristics							
t_{PD}	propagation delay	HIGH to LOW; V_{DD} $= 1.8 V$; T _{amb} = 25 °C V _{IC} = 0.1 V; 100 mV overdrive input	2		\overline{c}		μs			
		$V_{IC} = 0.1 V$; rail-to- rail input			915		ns			
		$V_{\text{IC}} = 0.9 \text{ V}$; 100 mV 2 overdrive input			525		ns			
		$V_{IC} = 0.9 V$; rail-to- rail input			600		ns			

Symbol	Parameter	Conditions	Notes	Min.	Typ. ¹	Max.	Unit
		$V_{IC} = 1.7 V$; rail-to- rail input			120		ns
'V _{hys}	hysteresis voltage ³	$ HYSTCRT[1:0] = 01$			13		mV
		$HYSTCRT[1:0] = 10$			27		mV
		$ HYSTCRT[1:0] = 11$			35		mV

Table 38. Comparator characteristics (continued)

1. Characterized on typical samples, not tested in production

2. 100 mV overdrive corresponds to a square wave from 50 mV below the reference (VIC) to 50 mV above the reference.

3. Input hysteresis is relative to the reference input channel and is software programmable.

7 Communication interfaces

7.1 USART interface

Excluding delays introduced by external device and PCB, the maximum supported bit rate for USART master synchronous mode is 20 Mbit/s, and the maximum supported bit rate for USART slave synchronous mode is 20.0 Mbit/s.

The actual USART bit rate depends on the delays introduced by the external trace, the external device, system clock (HCLK), and capacitive loading.

 T_{amb} = -20 °C to 70 °C; V_{DD} = 1.71 V to 1.89 V; C_L = 20 pF balanced loading on all pins; Input slew = 1 ns, SLEW setting = standard mode for all pins; Parameters sampled at the 50 % level of the rising or falling edge.

1. Based on simulation; not tested in production

Figure 24. USART timing

7.2 I ²C-bus

 T_{amb} = -20 [°]C to +70 [°]C; 1.71 V *≤* V_{DD} *≤* 1.89 V.¹

Table 40. I2C-bus pins[1](#page-57-0)

Symbol	Parameter	Notes	Conditions	Min.	Max.	Unit
$\mathsf{f}_{\mathsf{SCL}}$	SCL clock		Standard-mode	$\mathbf 0$	100	kHz
	frequency		Fast-mode	$\mathbf 0$	400	kHz
			Fast-mode Plus	$\mathbf 0$	1	MHz
t_f	fall time	2, 3, 4, 5	Both SDA and SCL signals		300	ns
			Standard-mode			
			Fast-mode	20x(VDD/3.6V)	300	ns
			Fast-mode Plus		120	ns
t_{LOW}	LOW period of	6	Standard-mode	4.7		μs
	the SCL clock		Fast-mode	1.3		μs
			Fast-mode Plus	0.5		μs
t _{HIGH}	HIGH period of	6	Standard-mode	$\overline{4}$		μs
		the SCL clock	Fast-mode	0.6		μs
			Fast-mode Plus	0.26		μs
t _{HD;DAT}	data hold time	7, 2, 8	Standard-mode	$\mathbf 0$		μs
			Fast-mode	$\mathbf 0$	$\overline{}$	μs
			Fast-mode Plus	$\mathbf 0$	$\overline{}$	μs
$t_{\text{SU;DAT}}$	data set-up time	9, 10	Standard-mode	4.7		ns

Table continues on the next page...

1. Parameters are valid over operating temperature range unless otherwise specified. See the I2C-bus specification UM10204 for details.

Table 40. I2C-bus pins1 (continued)

- 1. Guaranteed by design. Not tested in production.
- 2. A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 3. Cb = total capacitance of one bus line in pF. If mixed with Hs-mode devices, faster fall times are allowed.
- 4. The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at 250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified t_f .
- 5. In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should allow for this when considering bus timing.
- 6. The MSTTIME register allows programming of certain times for the clock (SCL) high and low times. Please see i.MX RT500 Low-Power Crossover MCU Reference Manual for further details.
- 7. $t_{HD;DAT}$ is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge.
- 8. The maximum t_{HD;DAT} could be 3.45 μ s and 0.9 μ s for Standard-mode and Fast-mode but must be less than the maximum of $t_{VD:DAT}$ or $t_{VD:ACK}$ by a transition time. This maximum must only be met if the device does not stretch the LOW period (t_1_{OW}) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.
- 9. t_{SUPAT} is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the acknowledge.
- 10. A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement $t_{\text{SU:DAT}} = 250$ ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr(max) + $t_{\text{SU:DAT}}$ = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.

Figure 25. I2C bus pins clock timing

7.3 I ²S-bus interface

 T_{amb} = -20 $^{\circ}$ C to 70 $^{\circ}$ C; V_{DD} = 1.71 V to 1.89 V; C_L = 30 pF balanced loading on all pins; Input slew = 1.0 ns, SLEW setting = standard mode for all pins; Parameters sampled at the 50 % level of the rising or falling edge.

Table 41. I2S-bus interface pins1, 2

1. Based on simulation; not tested in production.

- 2. The Flexcomm Interface function clock frequency should not be above 100 MHz. See the data rates section in the I2S chapter in the i.MX RT500 Low-Power Crossover MCU Reference Manual (IMXRT500RM) to calculate clock and sample rates.
- 3. Typical ratings are not guaranteed.
- 4. Based on simulation. Not tested in production.
- 5. Clock Divider register (DIV) = 0x0.

Communication interfaces

Figure 27. I2S-bus timing (slave)

7.4 SPI interfaces (Flexcomm interfaces 0-8, 10-12)

The actual SPI bit rate depends on the delays introduced by the external trace, the external device, system clock (HCLK), and capacitive loading.

Excluding delays introduced by external device and PCB, the maximum supported bit rate for SPI master mode (transmit/receive) is 25 Mbit/s and the maximum supported bit rate for SPI slave mode (transmit/receive) is 25 Mbit/s.

 T_{amb} = -20 °C to 70 °C; 1.71 V \leq V_{DD} \leq 1.89 V; C_L = 10 pF balanced loading on all pins; Input slew = 1 ns, SLEW setting = standard mode for all pins;. Parameters sampled at the 50 % level of the rising or falling edge.

Table 42. SPI interfaces1

1. Based on simulation; not tested in production

Figure 28. SPI master timing

Figure 29. SPI slave timing

7.5 High-Speed SPI interface (Flexcomm interfaces 14 and 16)

The actual SPI bit rate depends on the delays introduced by the external trace, the external device, system clock (HCLK), and capacitive loading.

Excluding delays introduced by external device and PCB, the maximum supported bit rate for SPI master mode (transmit/receive) is 50 Mbit/s.

Excluding delays introduced by external device and PCB, the maximum supported bit rate for SPI slave mode (receive) is 50 Mbit/s and for SPI slave mode (transmit) is 35 Mbit/s.

 T_{amb} = -20 °C to 70 °C; 1.71 V \leq V_{DD} \leq 1.89 V; C_L = 10 pF balanced loading on all pins; Input slew = 1 ns, SLEW setting = standard mode for all pins;. Parameters sampled at the 50 % level of the rising or falling edge.

Table 43. High-Speed SPI interfaces1

1. Based on simulation; not tested in production

Figure 30. SPI master timing

Communication interfaces

Figure 31. SPI slave timing

7.6 SD/MMC and SDIO

 T_{amb} = -20 °C to +70 °C, V_{DD} = 1.71 V to 1.89 V; VDDCORE = 1.13 V; CL = 10 pF. DLL_CTRL = 0x200, Full Drive Mode on all pins, Input slew = 1 ns, SLEW setting = standard mode for all pins;. Parameters sampled at the 50 % level of the rising or falling edge. Based on simulation, not tested in production.

Table 44. SD/MMC and SDIO characteristics (Default Speed (DS), High Speed (HS) SDR-12 and SDR-25) (continued)

 T_{amb} = -20 °C to +70 °C, V_{DD} = 1.71 V to 1.89 V; VDDCORE = 1.13 V; CL = 10 pF. DLL_CTRL = 0x200, Full Drive Mode on all pins, Input slew = 1 ns, SLEW setting = standard mode for all pins;. Parameters sampled at the 50 % level of the rising or falling edge. Based on simulation, not tested in production.

Table 45. SD/MMC and SDIO characteristics ((SDR-50, SDR-104, HS-200 (MMC)) (continued)

 T_{amb} = -20 °C to +70 °C, V_{DD} = 1.71 V to 1.89 V; VDDCORE = 1.13 V; CL = 10 pF. DLL_CTRL = 0x200, Full Drive Mode on all pins, Input slew = 1 ns, SLEW setting = standard mode for all pins;. Parameters sampled at the 50 % level of the rising or falling edge. Based on simulation, not tested in production. HS-400 supported on SD port 0 only.

Table 46. SD/MMC and SDIO characteristics ((DDR-50, HS DDR (MMC))

T_{amb} = -20 *°C to +70 °C, V_{DD} = 1.71 V to 1.*89 V; VDDCORE = 1.13 V; CL = 10 pF. DLL_CTRL = 0x200, Full Drive Mode on all pins, Input slew = 1 ns, SLEW setting = standard mode for all pins;. Parameters sampled at the 50 % level of the rising or falling edge. Based on simulation, not tested in production. HS-400 supported on SD port 0 only.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$\mathsf{f}_{\mathsf{clk}}$	clock frequency	on pin SD_CLK; data transfer mode, HS-400 (400 MB/s)			200	MHz
$t_{\text{su}(D)}$	data input set- up time	on pins SD_DATn as inputs	0.5		-	ns
		on pins SD_CMD as inputs	0.5			ns
$t_{h(D)}$	data input hold time	on pins SD_DATn as inputs	$\mathbf 0$			ns
		on pins SD_CMD as inputs	$\mathbf 0$			ns
$t_{\nu(Q)}$	data output valid time	on pins SD_DATn as outputs	$\mathbf 0$		1.0	ns
		on pins SD_CMD as outputs	$\mathbf 0$		1.0	ns

Table 47. SD/MMC and SDIO characteristics (HS-400(MMC))

Figure 32. SD/MMC and SDIO timing

7.7 DMIC subsystem

 T_{amb} = -20 °C to 70 °C; V_{DD} = 1.71 V to 1.89 V; C_L = 20 pF balanced loading on all pins; Input slew = 1 ns, SLEW set to standard mode for all pins; Bypass bit = 0; Parameters sampled at the 50% level of the rising or falling edge.

Table 48. Dynamic characteristics1

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{DS}	data set-up time		13			ns
LDH	Idata hold time				-	ns

1. Based on simulated values.

Figure 33. DMIC timing diagram

7.8 USB interface characteristics

This section describes the USB1 port High Speed/Full Speed (HS/FS) transceiver. The USB HS/FS meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 Specification.

7.9 USB DCD electrical specifications

Table 49. USB DCD electrical specifications

Symbol	Description	Min.	Typ.	Max.	Unit
V_{DP_SRC} V_{DM_SRC}	USB DP and USB DM source voltages (up to 250) μA)	0.5		0.7	v
V_{LGC}	Threshold voltage for logic high	0.8		2.0	
IDP SRC	USB_DP source current	7	10	13	μA
I _{DM} SINK, IDP SINK	USB DM and USB DP sink currents	50	100	150	μA
R _{DM_DWN}	D- pulldown resistance for data pin contact detect	14.25		24.8	$k\Omega$
V _{DAT} REF	Data detect voltage	0.25	0.33	0.4	

7.10 USB High Speed Transceiver and PHY specifications

This section describes the High Speed USB PHY parameters. The high speed PHY is capable of full speed signaling as well.

The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 Specification with the amendments below.

- USB ENGINEERING CHANGE NOTICE
	- Title: 5V Short Circuit Withstand Requirement Change
	- Applies to: Universal Serial Bus Specification, Revision 2.0
- Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
- USB ENGINEERING CHANGE NOTICE
	- Title: Pull-up/Pull-down resistors
	- Applies to: Universal Serial Bus Specification, Revision 2.0
- USB ENGINEERING CHANGE NOTICE
	- Title: Suspend Current Limit Changes
	- Applies to: Universal Serial Bus Specification, Revision 2.0
- On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification
	- Revision 2.0 plus errata and ecn June 4, 2010
- Battery Charging Specification (available from USB-IF)
	- Revision 1.2, December 7, 2010

 $USB1_VBUS²$ pin is a detector function which is 5v tolerant and complies with the above specifications without needing any external voltage division components.

7.11 Improved Inter-Integrated Circuit Interface (MIPI-I3C) specifications

Unless otherwise specified, MIPI-I3C specifications are timed to/from the V_{IH} and/or V_{II} signal points.

^{2.} On WLCSP package, USB ISP mode is not supported. VBUS pin is not available on the WLCSP package. To detect VBUS connection, user can connect a GPIO pin to the USB connector's VBUS. When a rising edge occurs on the GPIO pin, software should set bit 10 (FORCE_VBUS) and bit 16 (DCON) in the DEVCMDSTAT register

Table 50. MIPI-I3C specifications when communicating with legacy I2C devices1

1. Based on simulation, not tested in production.

Table 51. MIPI-I3C open drain mode specifications1

1. Based on simulation, not tested in production.

Table 52. MIPI-I3C push-pull specifications for SDR and HDR-DDR modes1

1. Based on simulation, not tested in production.

2. When communicating with an I3C Device on a mixed Bus, the t_{DIG_H_MIXED} period must be constrained in order to make sure that I²C devices do not interpret I3C signaling as valid I²C signaling.

3. When communication with an I3C Device on a mixed Bus, the t_{DIG_H} period must be constrained in order to make sure that I2C devices do not interpret I3C signaling as valid I2C signaling.

8 Timer modules

8.1 SCTimer/PWM output timing

 T_{amb} = -20 [°]C to 70 °C; 1.71 V \leq V_{DD} \leq 1.89 V C_L = 20 pF. Simulated skew (over process, voltage, and temperature) of any two SCT fixed-pin output signals; sampled at the 50% level of the rising or falling edge; values guaranteed by design.

9 Architectural overview

The Arm Cortex-M33 includes two AHB-Lite buses: the code bus and the system bus.

The i.MX RT500 uses a multi-layer AHB matrix to connect the Arm Cortex-M33 buses and other bus masters to peripherals in a flexible manner that optimizes performance by allowing peripherals that are on different slave ports of the matrix to be accessed simultaneously by different bus masters.

9.1 Detailed block diagram

The following figure shows the detailed block diagram for i. MX RT500

Figure 35. i.MX RT500 detailed block diagram

9.2 Shared system SRAM

The entire system TCM SRAM space (accessed in single cycle) of up to 5 MB is divided into up to 32 separate partitions, which are accessible to both CPUs, both DMA engines, and all other AHB bus masters. The Fusion CPU TCMI (Instruction) &

TCMD (Data) interfaces and the Graphics (GPU/LCD) subsystem each access the RAM via separate, dedicated 64-bit interfaces. All other masters, including the Cortex-M33 processor and the DMA engines, access RAM via the main 32-bit AHB bus. All of these accesses are single-cycle with the exception of the GPU/LCD. Hardware interface modules arbitrate access to each RAM partition between the main AHB bus, the graphics AHB bus and the Fusion Tightly-Coupled-Memory buses.

Under software control, each of the 32 individual SRAM partitions can be used exclusively as code or as data, dedicated either CPU, or shared among the various masters. Each partition can be independently placed in a low-power retention mode or powered off entirely.

9.3 RT500 modules list

The i.MX RT500 contains a variety of digital and analog modules. The following table describes briefly about these modules.

Block Name	Block Mnemonic	Subsystem	Brief description
Arm core modules			
ARM Cortex M33 processor	MCU	Core module	The Arm Cortex-M33 is a general purpose, 32-bit microprocessor, which offers high performance and very low power consumption. The Arm Cortex-M33 offers many new features, including a Thumb-2 instruction set, low interrupt latency, hardware multiply and divide, interruptable/continuable multiple load and store instructions, automatic state save and restore for interrupts, tightly integrated interrupt controller with wake- up interrupt controller, and multiple core buses capable of simultaneous accesses. M33 includes ARM's TrustZone M for enhanced security as well as a co- processor interface. This interface is used on this device to provide hardware acceleration for DSP functions (Powerquad co-processor) and Security/ cryptography operations (CASPER co- processor). A 3-stage pipeline is employed so that all parts of the processing and memory systems can operate continuously. Typically, while one instruction is being executed, its

Table 54. i.MX RT500 modules list

10 Application information

10.1 Current consumption vs. memory partitions

The following figure shows the current consumption vs memory partitions:

M33 active, running enhanced-while(1) code in different partitions.

Typical silicon, VDDCore=1.1V, Temperature=25℃, FBB, HCLK=192MHz (FRO).

All memories array/periphery ON (PDRUNCFG2/3) and only one partition clocked (AHB_SRAM_ACCESS_DISABLE register).

Figure 36. Current consumption vs. memory partitions

10.2 Standard I/O pin configuration

Each port pin (PIOm_n), PMIC_I2C_SCL and PMIC_I2C_SDA has one IOPCTL register assigned to control the characteristics of the pin. This chip has two types of GPIO pads: Fail Safe pads, which can handle input voltages up to 3.6 V when the VDDIO supply is 0V (not powered); and High Speed pads, which are used on higher speed ports and cannot handle input voltages greater than VDDIO at any time.

The IO pins associated with power domains VDDIO_0/1/2/4 can only support input voltages up to 1.8V when powered. IO pins in the VDDIO_3 power domain can support input voltages up to 3.6V (when VDDIO_3 is 3.6V).

The IOPCTL registers control the following GPIO pad properties: pull-up/-down resistors, input buffer enable, output slew rate, output drive strength, analog multiplexor enable, pseudo open-drain output enable, and input invert enable.

For the High Speed pads, the IOPCTL registers don't control the following GPIO pad properties: output slew rate and analog mulitplexer enable.

Application information

Figure 38. Simplified High Speed pin configuration

10.3 RTC oscillator

In the RTC oscillator circuit, only the crystal (XTAL) needs to be connected externally on RTCXIN and RTCXOUT. Load capacitances C_{X1} and C_{X2} can be applied externally or internally using the RTC_OSC_loadcap settings in the RTC_CTRL register. See the following figure and parameters in [RTC oscillator.](#page-38-0)

Figure 39. RTC oscillator components

For best frequency accuracy, the load capacitors need to be tuned in the application using the following guidance. After selecting the crystal, the approximate load capacitor C_{X1} and C_{X2} values can be generally determined by the following expression:

 $C_{X1} = C_{X2} = 2C_L - C_{Pad} - 2C_{STRAY}$

Where:

 C_{L} - Crystal load capacitance (from crystal specification)

 C_{Pad} - Pad capacitance of the RTCXIN and RTCXOUT pins (\sim 3 pF, for each pad).

 C_{STRAY} – stray capacitance between RTCXIN and RTCXOUT pins.

For example:

 $C_I = 9$ pF

 $C_{X1} = C_{X2} = 2C_{L} - C_{Pad} - 2C_{STRAY}$

 $C_{X1} = C_{X2} = 2*9 - 3 - 0 = 15 pF$

Although C_{STRAY} can be ignored in first-pass calculations, the actual board layout and placement of external components influence the optimal values of external load capacitors. Therefore, it is recommended to fine tune the values of load capacitors on

actual hardware board to get the accurate clock frequency. For fine tuning, output the RTC Clock to the CLKOUT pin and optimize the values of load capacitors for minimum frequency deviation.

To bypass the RTC crystal oscillator with an external CMOS crystal oscillator, connect the external oscillator to the RTCXIN pin and float RTCXOUT.

10.3.1 RTC Printed Circuit Board (PCB) design guidelines

- Place the crystal (and external load capacitors, if necessary) on the PCB as close as possible to the oscillator pins on the same layer as the chip.
- Keep trace lengths as short as possible.
- The layer beneath the crystal should be a ground plane for load capacitor connection, as well as field control.
- Do not place any signal traces near the crystal traces.

10.4 XTAL oscillator

In the XTAL oscillator circuit, the crystal (XTAL), feedback resistor (high gain mode only), and the load capacitances C_X and C_Y need to be connected externally on XTALIN and XTALOUT. See the figure below and parameters in [Crystal oscillator](#page-37-0).

Figure 40. XTAL oscillator connection - Low-Power Mode

Figure 41. XTAL oscillator connection - High Gain Mode

For best frequency accuracy, the load capacitors need to be tuned in the application using the following guidance. After selecting the crystal, the approximate load capacitor C_X and C_Y values can be generally determined by the following expression:

 $C_x = C_y = 2C_L - C_{Pad} - 2C_{STRAY}$

Where:

 C_{L} - Crystal load capacitance

 C_{Pad} - Pad capacitance of the XTALIN and XTALOUT pins (\sim 3 pF, for each pad).

 C_{STRAY} – stray capacitance between XTALIN and XTALOUT pins.

For example:

 $C_I = 9$ pF

 $C_{\rm x} = C_{\rm y} = 2C_{\rm L}$ - $C_{\rm Pad}$ - $2C_{\rm STRAY}$

 $C_x = C_y = 2*9 - 3 - 0 = 15$ pF

Although C_{STRAY} can be ignored in first-pass calculations, the actual board layout and placement of external components influence the optimal values of external load capacitors. Therefore, it is recommended to fine tune the values of external load capacitors on actual hardware board to get the accurate clock frequency. For fine tuning, measure the clock on the CLKOUT pin and optimize the values of external load capacitors for minimum frequency deviation.

To bypass the crystal oscillator with an external CMOS crystal oscillator, connect the external oscillator to the XTALIN pin and float XTALOUT. Set the BYPASS_ENABLE bit in CLKCTL0_SYSOSCCTL0.

For oscillator high gain mode, a larger voltage swing is used at the crystal pin. This gives a higher noise immunity within the oscillator and less edge-to-edge jitter of the internal clock. If high gain mode is not required, power used by the crystal oscillator can be reduced by using low power mode.

NOTE

High gain mode requires a 1 megaohm feedback resistor (RF) to be inserted.

10.4.1 XTAL Printed Circuit Board (PCB) design guidelines

- Connect the crystal, feedback resistor (high gain mode only), and load capacitors on the PCB as close as possible to the oscillator pins on the same layer as the chip.
- Keep trace lengths as short as possible.
- The layer beneath the crystal should be a ground plane for load capacitor connection, as well as field control.
- Do not place any signal traces near the crystal traces.

10.4.2 Temperature compensated crystal oscillator (TCXO)

A clipped sine-wave temperature compensated crystal oscillator can be used as the input clock to the main oscillator. Connect the TCXO output to the XTALIN pin and float the XTALOUT pin. Do not use a series (AC coupling) capacitor between the TCXO output and XTALIN, as the low power oscillator has an internal coupling capacitor. Configure the oscillator to use the low power mode by setting LP_ENABLE in CLKCTL0_SYSOSCCTL0. (Leave BYPASS_ENABLE cleared). See the following figure.

Figure 42. Temperature compensated crystal oscillator

1. Operating range of oscillator. Practical range is 5 MHz to 26 MHz, based on PLL requirements.

2. TCXO supply should be same as VDD1V8.

3. TCXO output minimum Vpp should be greater than this value. Do not insert a DC-cut capacitor.

10.5 Suggested USB interface solutions

The USB device can be connected to the USB as self-powered device (see Figure 43) or bus-powered device (see [Figure 44](#page-91-0)).

On the i.MX RT500, the USB_VBUS 3 pin is 5 V tolerant pin regardless of whether USB1_VDD3V3 or VDD pins are present or not.

^{3.} On WLCSP package, USB ISP mode is not supported. VBUS pin is not available on the WLCSP package. To detect VBUS connection, user can connect a GPIO pin to the USB connector's VBUS. When a rising edge occurs on the GPIO pin, software should set bit 10 (FORCE_VBUS) and bit 16 (DCON) in the DEVCMDSTAT register

Application information

The internal pull-up (1.5 kΩ) can be enabled by setting the DCON bit in the DEVCMDSTAT register to prevent the USB from timing out when there is a significant delay between power-up and handling USB traffic. External circuitry is not required.

Figure 44. USB interface on a bus-powered device

In the figure above, two options exist for connecting VBUS to the USB_VBUS pin:

1. Connect the regulator output to USB_VBUS. In this case, the USB_VBUS signal is HIGH whenever the part is powered.

2. Connect the VBUS signal directly from the connector to the USB_VBUS pin. In this case, 5 V are applied to the USB_VBUS pin while the regulator is ramping up to to supply USB1_VDD3V3

10.6 Boundary scan method

The RESET pin selects between the JTAG boundary scan (RESET = LOW) and the Arm SWD debug (RESET = HIGH). The Arm SWD debug port is disabled while the RT5xx is in reset. The JTAG boundary scan pins are selected by hardware when the part is in boundary scan mode.

To perform boundary scan testing, follow these steps:

- 1. Power up the part with the RESET pin pulled LOW externally.
- 2. Wait for at least 4.4 ms.
- 3. Perform boundary scan operations.
- 4. Once the boundary scan operations are completed, assert the TRST pin to enable the SWD debug mode, and release the RESET pin (pull HIGH).

NOTE

The JTAG interface cannot be used for debug purposes.

10.6.1 VDDA_BIAS Power Supply Connection

Since all analog pins are in the 1.8 V VDDIO domains, VDDA_BIAS must be connected to a 1.8 V supply.

11 Abbreviations

Table 55. Abbreviations

Table 55. Abbreviations (continued)

12 Pinouts

12.1 Signal multiplexing and pinouts

The table below shows the pin functions available on each pin, and for each package. These functions are selectable using IOPCTL control registers.

Some functions, such as ADC or comparator inputs, are available only on specific pins when digital functions are disabled on those pins. By default, the GPIO functionality, Func 0, is always selected with the exception of PIO2_25 and PIO2_26, which have Func 1 (SWD) selected, at reset. This allows debug to operate through reset.

Most pins have all pull-ups, pull-downs, and inputs turned off at reset. This prevents power loss through pins prior to software configuration. Due to special pin functions, some pins have a different reset configuration: If the Boot ROM OTP is configured to use the ISP Select pins at boot, then these pins PIO1_15, PIO3_28, and PIO3_29 have pull-ups enabled by ROM; otherwise these pull-ups are not enabled at boot. The SWD pins PIO2_25 and PIO2_26 have the input buffers enabled at reset.

The state of pins PIO1_15, PIO3_28, and PIO3_29 at Reset determine the boot source for the part (if configured in the Boot ROM OTP) or if the ISP handler is invoked.

The JTAG functions TRST, TCK, TMS, TDI, and TDO, are selected on pins PIO0_7 to PIO0_11 by hardware when the part is in boundary scan mode.

12.2 i.MXRT500 Pinouts: 249 FOWLP package

96
NXP Semiconductors NXP Semiconductors

> i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023 i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023

98
NXP Semiconductors NXP Semiconductors

> i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023 i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023

ab
NXP Semiconductors
NXP Semiconductors NXP Semiconductors

Table continues on the next page...

i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023 i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023

100 NXP Semiconductors

102 NXP Semiconductors NXP Semiconductors

> i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023 i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023

104 NXP Semiconductors

> i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023 i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023

Table continues on the next page...

i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023 i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023

105
NXP Semiconductors NXP Semiconductors

Table continues on the next page...

106 NXP Semiconductors

> i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023 i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023

108 NXP Semiconductors

> i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023 i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023

i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023 i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023

12.3 i.MX RT500 Pinouts: 141 CSP package

Table continues on the next page...

> i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023 i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023

i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023 i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023

Table continues on the next page...

Table continues on the next page...

> i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023 i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023

Table continues on the next page...

Table continues on the next page...

> i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023 i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023

12.4 249-pin FOWLP and 141-pin WLCSP ballmaps

The following figure shows the 249 FOWLP ballmap for this device.

Figure 45. i.MX RT500 249-pin FOWLP ballmap

The following figure shows the 141-pin WLCSP ballmap for this device.

12.5 Termination of unused pins

The following table shows how to terminate pins on functions that are not used in the application. Unused Fail Safe GPIO pins can be left unconnected. High Speed GPIO pins must not float, whether they are used or not. Other unused pins may require biasing with a resistor or directly to a power rail.

By default, unused pins with GPIO functions are tri-stated with the input buffer disabled.

All power pins in the domains listed below must be connected to the recommended voltage.

Table continues on the next page...

120 i.MX RT500 Low-Power Crossover Processor, Rev. 2, 05/2023

1. $Z =$ high impedance; $I =$ Input; O = Output

2. For the WLCSP package, in addition to managing the externally bonded High Speed pins on the package, the following unbonded High Speed pins need to be configured via software with internal pull-down resistors: PIO1_24 - 27, PIO1_29, PIO4_11 - 17, PIO5_15 - 18.

3. On WLCSP package, USB ISP mode is not supported. VBUS pin is not available on the WLCSP package. To detect VBUS connection, user can connect a GPIO pin to the USB connector's VBUS. When a rising edge occurs on the GPIO pin, software should set bit 10 (FORCE_VBUS) and bit 16 (DCON) in the DEVCMDSTAT register.

12.6 Pin states in different power modes

Table 56. Pin states in different power modes

1. Deep Power-down mode is not supported in the WLCSP package.

2. Default and programmed pin states are retained in sleep and deep-sleep.

12.7 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to [nxp.com](http://www.nxp.com) and perform a keyword search for the drawing's document number:

13 Revision history

Rev. No.	Date	Substantial changes
0	02/2021	Initial public release
1	09/2022	• Updated the Features list within Front Matter Content. • Updated core frequency to be 275 MHz, throughout the document. • Updated this table. • Updated Figure 1 • Added a note to USB1_VBUS signal, throughout the document. • Updated the section Power consumption operating behavior • Updated Table 20 and Table 21. • Updated Table 2 and Table 5. • Updated the section l^2S -bus interface • Updated Table 35 • Updated the section Wake-up process. • Updated the section Power supply for pins and moved it before the I/O DC parameters section • Updated the section I/O DC parameters • Added Table 31 • Updated the section CoreMark data • Updated the section Power sequence. • Added the section LVD operating requirements. • Updated Table 21. • Updated Table 31. • Updated the section Crystal oscillator, RTC oscillator, and

Table 57. Revision history

Table continues on the next page...

Table 57. Revision history

Table 57. Revision history (continued)

Legal information

Data sheet status

[1] Please consult the most recently issued document before initiating or completing a design.

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

^[2] The term 'short data sheet' is explained in section "Definitions".

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Hazardous voltage — Although basic supply voltages of the product may be much lower, circuit voltages up to 60 V may appear when operating this product, depending on settings and application. Customers incorporating or otherwise using these products in applications where such high voltages may appear during operation, assembly, test etc. of such application, do so at their own risk. Customers agree to fully indemnify NXP Semiconductors for any damages resulting from or in connection with such high voltages. Furthermore, customers are drawn to safety standards (IEC 950, EN 60 950, CENELEC, ISO, etc.) and other (legal) requirements applying to such high voltages.

Bare die - All die are tested on compliance with their related technical specifications as stated in this data sheet up to the point of wafer sawing and are handled in accordance with the NXP Semiconductors storage and transportation conditions. If there are data sheet limits not guaranteed, these will be separately indicated in the data sheet. There are no post-packing tests performed on individual die or wafers.

NXP Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die. Accordingly, NXP Semiconductors assumes no liability for device functionality or performance of the die or systems after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify their application in which the die is used.

All die sales are conditioned upon and subject to the customer entering into a written die sale agreement with NXP Semiconductors through its legal department.

Quick reference data - The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products - Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at [PSIRT@nxp.com\)](mailto:PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade

secrets. All rights reserved. Cadence — the Cadence logo, and the other Cadence marks found at www.cadence.com/go/trademarks are trademarks or registered trademarks of Cadence Design Systems, Inc. All rights reserved worldwide.

EdgeLock - is a trademark of NXP B.V.

elQ — is a trademark of NXP B.V.

I2C-bus - logo is a trademark of NXP B.V.

NXP SECURE CONNECTIONS FOR A SMARTER WORLD — is a trademark of NXP B.V.