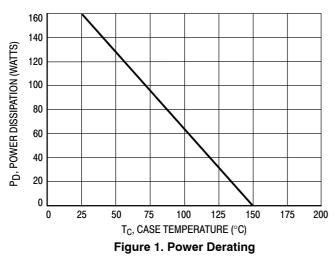
MJH6284 (NPN), MJH6287 (PNP)

Darlington Complementary Silicon Power Transistors

These devices are designed for general-purpose amplifier and low-speed switching motor control applications.

Features

- Similar to the Popular NPN 2N6284 and the PNP 2N6287
- Rugged RBSOA Characteristics
- Monolithic Construction with Built-in Collector-Emitter Diode
- These are Pb-Free Devices*


MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V _{CEO}	100	Vdc
Collector-Base Voltage	V _{CB}	100	Vdc
Emitter-Base Voltage	V_{EB}	5.0	Vdc
Collector Current – Continuous – Peak	Ι _C	20 40	Adc
Base Current	Ι _Β	0.5	Adc
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	160 1.28	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit			
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.78	°C/W			
Strossos ovocoding Maximum Patings may damago the dovice.						

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®

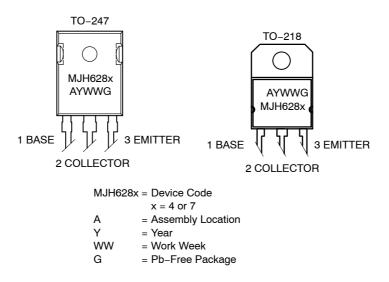
http://onsemi.com

DARLINGTON 20 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS 100 VOLTS, 160 WATTS

SOT-93 (TO-218) CASE 340D

TO-247 CASE 340L STYLE 3

NOTE: Effective June 2012 this device will be available only in the TO-247 package. Reference FPCN# 16827.


ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MJH6284 (NPN), MJH6287 (PNP)

MARKING DIAGRAMS

ORDERING INFORMATION

Device Order Number	Package Type	Shipping
MJH6284G	TO-218 (Pb-Free)	30 Units / Rail
MJH6287G	TO-218 (Pb-Free)	30 Units / Rail
MJH6284G	TO-247 (Pb-Free)	30 Units / Rail
MJH6287G	TO-247 (Pb-Free)	30 Units / Rail

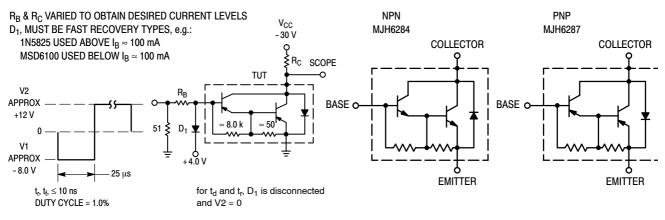
MJH6284 (NPN), MJH6287 (PNP)

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Min	Max	Unit
			•
V _{CEO(sus)}	100	-	Vdc
I _{CEO}	-	1.0	mAdc
ICEX		0.5 5.0	mAdc
I _{EBO}	-	2.0	mAdc
	V _{CEO(sus)} I _{CEO} I _{CEX}	V _{CEO(sus)} 100 I _{CEO} - I _{CEX} - - -	V _{CEO(sus)} 100 - I _{CEO} - 1.0 I _{CEX} - 0.5 - 5.0 -

ON CHARACTERISTICS (Note 1)

$ \begin{array}{l} \text{DC Current Gain} \\ (I_C = 10 \text{ Adc}, V_{CE} = 3.0 \text{ Vdc}) \\ (I_C = 20 \text{ Adc}, V_{CE} = 3.0 \text{ Vdc}) \end{array} $	h _{FE}	750 100	18,000 _	-
Collector–Emitter Saturation Voltage ($I_C = 10 \text{ Adc}, I_B = 40 \text{ mAdc}$) ($I_C = 20 \text{ Adc}, I_B = 200 \text{ mAdc}$)	V _{CE(sat)}		2.0 3.0	Vdc
Base-Emitter On Voltage (I _C = 10 Adc, V _{CE} = 3.0 Vdc)	V _{BE(on)}	-	2.8	Vdc
Base-Emitter Saturation Voltage (I _C = 20 Adc, I _B = 200 mAdc)	V _{BE(sat)}	-	4.0	Vdc

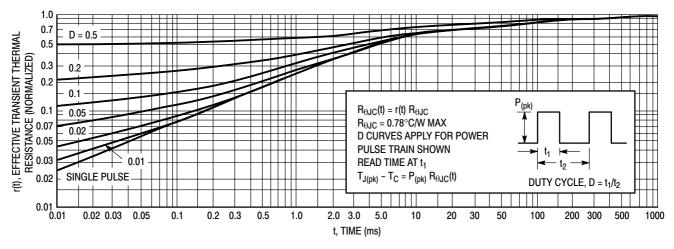

DYNAMIC CHARACTERISTICS

Current–Gain Bandwidth Product (I_C = 10 Adc, V_{CE} = 3.0 Vdc, f = 1.0 MHz)		f _T	4.0	-	MHz
(*CB ····································	H6284 H6287	C _{ob}	-	400 600	pF
Small–Signal Current Gain (I_C = 10 Adc, V_{CE} = 3.0 Vdc, f = 1.0 kHz)		h _{fe}	300	-	-

SWITCHING CHARACTERISTICS

			Тур	ical	
	Resistive Load	Symbol	NPN	PNP	Unit
Delay Time		t _d	0.1	0.1	μs
Rise Time	$V_{CC} = 30 \text{ Vdc}, I_C = 10 \text{ Adc}$ $I_{B1} = I_{B2} = 100 \text{ mA}$	t _r	0.3	0.3	
Storage Time	$\begin{array}{l} \text{B}_1 = \text{B}_2 = 100 \text{ mA} \\ \text{Duty Cycle} = 1.0\% \end{array}$	t _s	1.0	1.0	
Fall Time		t _f	3.5	2.0	1

1. Pulse test: Pulse Width = 300 μ s, Duty Cycle = 2.0%.



For NPN test circuit reverse diode and voltage polarities.

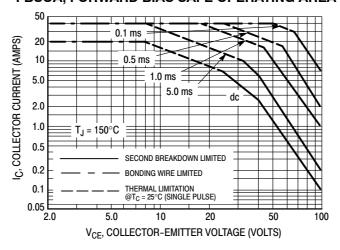

Figure 2. Switching Times Test Circuit

Figure 3. Darlington Schematic

MJH6284 (NPN), MJH6287 (PNP)

FBSOA, FORWARD BIAS SAFE OPERATING AREA

Figure 5. MJH6284, MJH6287

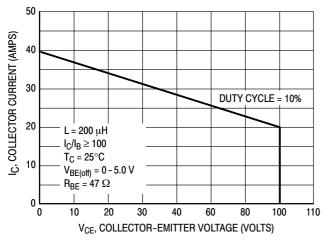
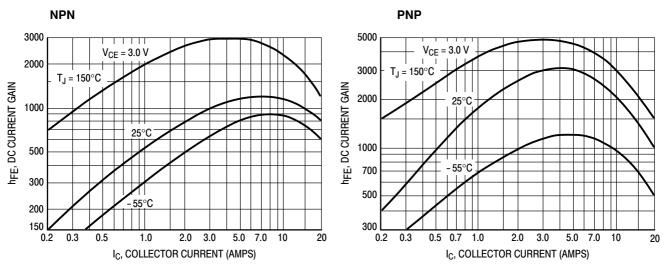




Figure 6. Maximum RBSOA, Reverse Bias Safe Operating Area

FORWARD BIAS

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 5 is based on $T_{J(pk)} = 150^{\circ}$ C; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}$ C. $T_{J(pk)}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

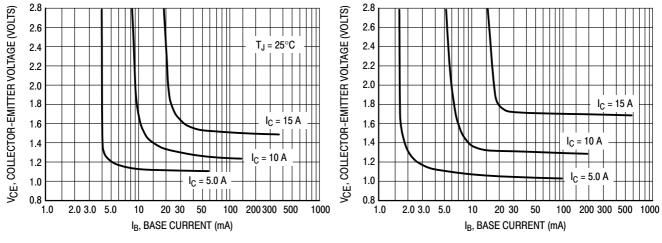


Figure 8. Collector Saturation Region

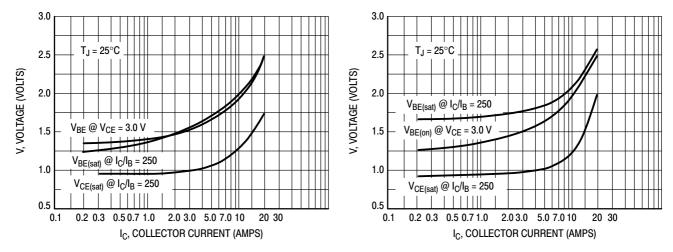
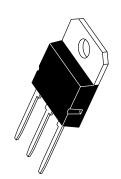
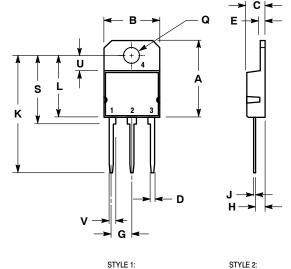
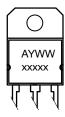



Figure 9. "On" Voltages



SOT-93 (TO-218) CASE 340D-02 **ISSUE E**

DATE 01/03/2002



PIN 1. BASE 2. COLLECTOR 3. 4. EMITTER COLLECTOR

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α		20.35		0.801
В	14.70	15.20	0.579	0.598
C	4.70	4.90	0.185	0.193
D	1.10	1.30	0.043	0.051
Ε	1.17	1.37	0.046	0.054
G	5.40	5.55	0.213	0.219
Н	2.00	3.00	0.079	0.118
J	0.50	0.78	0.020	0.031
K	31.00 REF		1.220	REF
L		16.20		0.638
Q	4.00	4.10	0.158	0.161
S	17.80	18.20	0.701	0.717
U	4.00	REF	0.157 REF	
۷	1.75	REF	0.069	

MARKING DIAGRAM

А = Assembly Location Y = Year ww = Work Week

XXXXX = Device Code

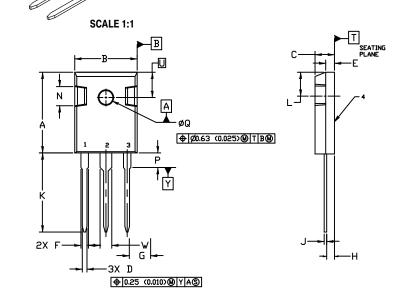
Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98ASB42643B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOT-93 PAGE 1 OF 1 ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

PIN 1. ANODE 2. CATHODE

CATHODE
ANODE
CATHODE
CATHODE

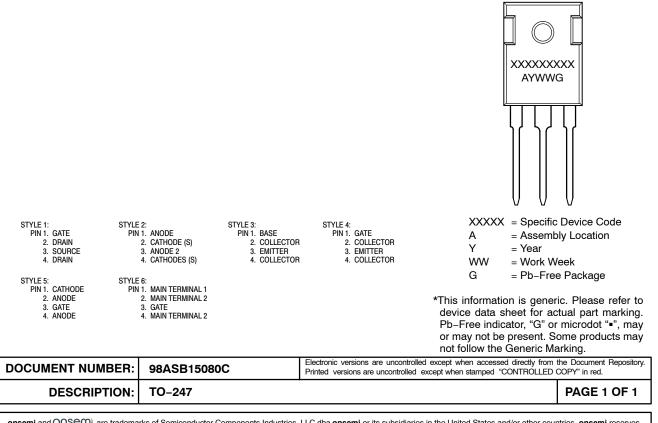
MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS


Onsemi

TO-247 CASE 340L ISSUE G

DATE 06 OCT 2021



- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER

	MILLIM	ETERS	INC	HES
DIM	MIN.	MAX.	MIN.	MAX.
Α	20.32	21.08	0.800	0.830
В	15.75	16.26	0.620	0.640
С	4.70	5.30	0.185	0.209
D	1.00	1.40	0.040	0.055
E	1.90	2.60	0.075	0.102
F	1.65	2.13	0.065	0.084
G	5.45	BSC	0.215 BSC	
Н	1.50	2.49	0.059	0.098
J	0.40	0.80	0.016	0.031
к	19.81	20.83	0.780	0.820
L	5.40	6.20	0.212	0.244
N	4.32	5.49	0.170	0.216
Р		4.50		0.177
Q	3.55	3.65	0.140	0.144
U	6.15	BSC	0.242 BSC	
V	2.87	3.12	0.113	0.123

GENERIC **MARKING DIAGRAM***

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.