

MMA042PP4

2 – 26 GHz Distributed Self-Biased LNA

Product Overview

MMA042PP4 is a gallium arsenide (GaAs) monolithic microwave integrated circuit (MMIC) pseudomorphic highelectron mobility transistor (pHEMT) distributed amplifier that operates between 2 GHz and 26 GHz. It is ideal for test instrumentation, defense, and space applications. The amplifier provides a 2 dB positive gain slope with a typical gain of 18 dB, 2.5 dB noise figure, 19 dBm of output power at 1 dB gain compression, and 29 dBm output IP3 at 10 GHz. The MMA042PP4 amplifier features RF I/Os that are internally matched to 50 Ω .

Key Features

- Frequency range: 2 to 26 GHz
- High Gain: 18 dB with +2 dB upslope
- Low Noise figure: 2.5 dB
- High Output IP3: + 29 dBm
- Maximum RF Input Power: + 24 dBm
- Single Positive Supply: +6V @ 120 mA (+8V VDD max)
- ESD Protection on RF and DC ports
- 50 Ω matched input/output

Applications

- Test and measurement instrumentation
- Electronic warfare (EW), electronic countermeasures (ECM), and electronic counter-countermeasures (ECCM)
- Military and space
- Telecom infrastructure
- Wideband microwave radios
- · Microwave and millimeter-wave communication systems

Performance Overview

Parameter	Тур.	Units
Frequency range	2 – 26	GHz
Gain	18	dB
Gain flatness	± 0.75	dB
NF	2.5	dB
Output IP3	+ 29	dBm

Export Classification: EAR99

Gain, OIP3& NF Performances

Table of Contents

Pro	duct O	verview1
1.	Electr	cal Specifications
	1.1. 1.2. 1.3.	Typical Electrical Performance
2.	Packa	ge Specifications8
3.	Applic	ation Ciruits: Eval PCB9
4.	Order	ing, Shipping and Handling
	4.1.	Handling Recommendations
	4.2.	Ordering Information
	4.3.	Packing Information11
5.	Revisi	on History
The	Micro	chip Website13
Pro	duct Cl	nange Notification Service13
Cus	tomer	Support13
Pro	duct Id	entification System14
Mic	rochip	Devices Code Protection Feature14
Leg	al Noti	ce
Trac	demark	s14
Qua	ality Ma	nagement System
Wor	rldwide	Sales and Service

1. Electrical Specifications

1.1 Typical Electrical Performance

Table 1-1. Typical Electrical Performance at 25 °C, Vdd = + 6V, Idd = 120 mA (Unless otherwise mentioned)

Parameter	Frequency Range	Min	Тур.	Max	Units
Frequency range				26	GHz
Gain	2 – 8 GHz		17		dB
	8 – 16 GHz		17		dB
	16 – 22 GHz		18		dB
	22 – 26 GHz		17		dB
Gain flatness	2 – 6 GHz		± 0.75		dB
	6 –12 GHz		± 0.75		dB
	12 – 22 GHz		± 0.75		dB
	22 – 26 GHz		± 1.0		dB
Noise Figure	2 – 6 GHz		3.0		dB
	6 –12 GHz		2.5		dB
	12 – 22 GHz		3.5		dB
	22 – 26 GHz		4		dB
P1dB	2 – 6 GHz		+ 17		dBm
	6 – 12 GHz		+ 16		dBm
	12 – 22 GHz		+ 15		dBm
	22 – 26 GHz		+ 14		dBm
OIP3	2 – 6 GHz		+ 29		dBm
	6 – 12 GHz		+ 28		dBm
	12 – 22 GHz		+ 26		dBm
	22 – 26 GHz		+25		dBm
Input Return Loss	2 – 6 GHz		12		dB
	6 – 12 GHz		13		dB
	12 – 22 GHz		10.5		dB
	22 – 26 GHz		7.5		dB
Output Return Loss	2 – 6 GHz		12		dB
	6 – 12 GHz		9.5		dB
	12 – 22 GHz		13		dB
	22 – 26 GHz		8		dB
VDD (Drain Voltage Supply)			+6		V

continued					
Parameter	Frequency Range	Min	Тур.	Мах	Units
Idd (Drain Current)			120		mA

1.2 Absolute Maximum Ratings

The following table shows the absolute maximum ratings of the MMA042PP4 device at 25 °C, unless otherwise specified. Exceeding one or any of the maximum ratings potentially could cause damage or latent defects to the device.

Table 1-2. Absolute Maximum Ratings

Parameter	Rating
Drain bias voltage (VDD)	+ 8 V
Gate bias voltage (VG)	– 1 V to + 0.5V
RF input power (Pin)	TBD
Channel Temperature	150 °C
VDD Current (IDD)	200 mA
DC Power Dissipation (T = 85 °C)	1.6 W
Thermal Resistance	17 °C/W
Storage Temperature	– 65 °C to + 150 °C
Operating Temperature	– 55 °C to + 85 °C

ESD Sensitive Device

1.3 Typical Performance Curves

The following graphs show the typical performance curves of the MMA042PP4 device at + 25 °C, + 6V and 120mA unless otherwise indicated.

Figure 1-1. Gain vs. Temperature

Figure 1-2. NF vs. Temperature

MMA042PP4 Electrical Specifications

Figure 1-3. S11 vs. Temperature

Figure 1-6. P3dB vs. Temperature

0

5

10 15 20 Frequency (GHz)

25

30

MMA042PP4 Electrical Specifications

Figure 1-14. 2nd Harmonic vs. Pout

2. Package Specifications

For additional packaging information, contact your Microchip sales representative.

Figure 2-1. Package Outline Drawing (mm)

Table 2-1. Package Information

Material	Lead Frame
Plating	Ni: 0.50 um min Pd: 0.02 um min Au: 0.05 um max

Table 2-2. PIN Description

PIN Number	Pad Name	Pad Description
4,5	RFIN	DC-Coupled and Matched to 50Ω.
15,16	RFOUT	Matched to 50Ω.
22	VDD	VDD supply
10	VGA	Connect to RF/DC Ground
11	VGB	Used to change Idd. Refer Table.
9	VSB	Connect to RF/DC Ground
3,6,14,17	GND	RF/DC Ground
1,2,7,8,12,13,18,19,20,21,23,24	N/C	
Backside Paddlle	RF/DC GND	Must be connected to RF/DC Ground

3. Application Ciruits: Eval PCB

Figure 3-1. Eval PCB Schematic

Figure 3-2. Eval PCB

Table 3-1. Bill of Material

Designation	Description	Manufacturer Part Number	Quantity
1	PCB Backplate		1
C1, C2	Cap 100nF 16V +/-10% X7R Au cer 0201	0201X104K160GT	2
H1, H2, H3	Header, 2-Pin, Dual row	15-91-2040	3
J1, J2, J3, J4	CONN 2.9MM FEMALE PCB EDGE MOUNT .012 PIN	25-146-1000-90	4
R1	RES 22 OHM 1/20W 1% 0201 SMD	ERJ-1GEF22R0C	1
R2	RES 10.2 OHM 1/20W 1% 0201 SMD	ERJ-1GEF10R2C	1
R3	Res 5.6-Ohm 1/20W 5% 0201	ERJ-1GEJ5R6C	1
R4	RES 3.3-OHM 1/20W 5% 0201	ERJ-1GEJ3R3C	1
U1	MMA042PP4 4X4 QFN	MMA042PP4	1

4. Ordering, Shipping and Handling

4.1 Handling Recommendations

Gallium arsenide integrated circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. It is recommended to follow all procedures and guidelines outlined in the Microsemi application note AN01: GaAs MMIC Handling and Die Attach Recommendations.

4.2 Ordering Information

For additional ordering information, contact your Microchip sales representative.

Part Number	Package
MMA042PP4	4 mm X 4 mm, 24L Plastic QFN

4.3 Packing Information

Standard Format	
Tape and Reel	

Note: Contact your Microchip sales representative for the minimum quantity order

5. Revision History

Table 5-1. Revision History

Revision	Date	Description
A	08/2021	Document created.

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's
 guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- **Business of Microchip** Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Product Identification System

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- · Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
 protection does not mean that we are guaranteeing the product is "unbreakable." Code protection is constantly
 evolving. We at Microchip are committed to continuously improving the code protection features of our products.
 Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act.
 If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
 for relief under that Act.

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2021, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN:

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.