

C/X-Band Low Noise Amplifier with High Input Power Handling

Product Overview

The MMA047PP4 is a Gallium Arsenide (GaAs), monolithic microwave integrated circuit (MMIC), Pseudomorphic High Electron Mobility Transistor (PHEMT), distributed amplifier operating from 4 to 14 GHz. Packaged in a fully molded 4x4mm QFN package, the amplifier operates reliably with input powers up to 32dBm of RF CW power. Noise Figure is 1.5dB, 21dB of gain, 34dBm OIP3, and 21dBm of output power at 1 dB compression. The MMA047AA amplifier is internally matched to 50 Ω.

Key Features

- Frequency range: 5 to 14 GHz
- Gain: 21 dB
- High OIP3: 34 dBm
- Noise Figure: 1.5 dB
- CW Input Power rating: 32dBm
- Single Supply with Adjustable Current
- On-Chip Bias Choke
- Supply: 7V @ 170mA
- RF/DC ESD Protection on Chip
- 50 Ohm Matched Input/Output
- Package: 4x4mm QFN

Functional Block Diagram

Figure 1 - Gain, NF Performances

Applications

- Telecommunications
- Military and space

Performance Overview

- Wideband microwave radios
- SatCom

Parameter Units Тур. Operational frequency range 5-14 GHz Gain 21 dB Noise Figure 1.5 dB P1dB 21 dBm OIP3 34 dBm Current @ +7V Supply 170 mA

Export Classification: EAR-99

MMA047PP4

Contents

1.	Elec	trical Specifications	3
1	.1.	Typical Electrical Performance	3
1	.2.	Absolute Maximum Ratings	4
1	.3.	Typical Performance Curves	4
2.	Die	Specifications	5
3.	App	lication Circuits	7
4.	Han	dling Recommendations	9
5.	Orde	ering Information	9
4	5.1.	Packing Information	9

1. Electrical Specifications

1.1. Typical Electrical Performance

Parameter	Frequency Range	Min	Тур.	Max	Units
Frequency range		4		14	GHz
Gain	4 GHz -14 GHz		21		dB
Gain flatness	4 GHz -14 GHz		±0.5		dB
Noise figure	6 GHz -12 GHz		1.5		dB
Input return loss	4 GHz -14 GHz		15		dB
Output return loss	4 GHz -14 GHz		10		dB
P1dB	4 GHz -14 GHz		21		dBm
Psat	4 GHz -14 GHz		23		dBm
OIP3	4 GHz -14 GHz		34		dBm
Hot Switching (ON/OFF)	4 GHz -14 GHz		50		ns
	100Hz Offset		-135		dBc/Hz
DI N'	1kHz Offset		-135		dBc/Hz
Phase Noise	10kHz Offset		-150		dBc/Hz
	100kHz Offset		-150		dBc/Hz
Stability k-factor	4 GHz -14 GHz	1.5			
Input Power Survivability (CW)	4 GHz -14 GHz			32	dBm
VDD (drain voltage supply)			7		V
IDD (drain current)			170		mA

 Table 1 - Typical Electrical Performance at 25 C, Vdd=7V, Idd=170 mA (Unless otherwise mentioned)

1.2. Absolute Maximum Ratings

The following table shows the absolute maximum ratings of the MMA047PP4 device at 25 °C, unless otherwise specified. Exceeding one or any of the maximum ratings potentially could cause damage or latent defects to the device.

Table 2 - Absolute Maximum Ratings

Parameter	Rating
Drain bias voltage (V _{DD})	8 V
Drain bias current (I _{DD})	200 mA
Gate bias voltage (V _G)	-2 V to 0.5 V
RF input power (Pin)	+32 dBm (CW)
Channel temperature	175 °C
Thermal resistance	12 °C/W
Storage temperature	–65 °C to 150 °C
Operating temperature	–55 °C to 85 °C
ESD	Class 1B (500V HBM)

1.3. Typical Performance Curves

The following graphs show the typical performance curves of the MMA047AA device at 25 °C, 7V, 170mA unless otherwise indicated, measured off GSG pads (see Figure 20) using SOLT calibration.

9 10 11 12 13 14

Frequency, GHz

MMA047PP4

18

17

16 15 2 3 4 5 6 7 8

6V

77

2. Package Specifications

For additional packaging information, contact your Microchip sales representative.

Pin ∦	Description	Pin #	Description
1	N/C	13	N/C
2	N/C	14	GND
3	GND	15	RFOUT
4	RFIN	16	RFOUT
5	RFIN	17	GND
6	GND	18	N/C
7	N/C	19	N/C
8	N/C	20	N/C
9	VSB	21	N/C
10	VGA	22	VDD
11	VGB	23	N/C
12	N/C	24	N/C

1. MATERIAL; LEADFRAME 2. PLATING; Ni: 0.50 um min

Pd: 0.02 um min Au: 0.05 um max

Table 3 - I/O Description

Pin Number	Pin Name	Pin Description
4,5	RF _{IN}	These pads are DC-coupled to 50 Ohm termination and matched to 50 Ω RF.
15, 16	RF _{OUT}	These pads are decoupled from DC and matched to 50 Ω RF.
22	V _{DD}	Vdd bias supply
10, 11	V _{GA} V _{GB}	Connect to RF/DC ground
9	V_{SB}	Used to control bias current (See table below)
3, 6, 14, 17 and Backside Paddle	Ground	
1, 2, 7, 8, 12, 13, 18, 19, 20, 21, 23, 24	N/C	Not connected internally, but recommend they are grounded on the PCB

MMA047PP4

Table 4. Idd current vs Rsb resistance termination on Vsb pin

RSB (Ohms)	<u>Idd@-50C</u>	<u>Idd@25C</u>	<u>Idd@85C</u>
0	164	171	171
1	151	157	158
2	141	147	148
3	134	139	141
4	129	133	135
5	124	129	130
6	120	125	126
7	117	122	123
8	115	119	121
9	112	117	118
10	111	115	116
11	109	113	115
12	107	112	113
13	106	110	112
14	105	109	111
15	104	108	110
16	103	107	109
17	102	106	108
18	101	105	107
19	100	104	106
20	99	104	105

3. Application Circuits

 Table 5. List of Materials for Evaluation Board

Designator	Description	Manufacturer Part Number 1	Quantity
C1, C2	0.1 μF ±10% 16V Ceramic Capacitor X7R 0402	CL05B104KO5NNNC	2
EPOX1	Epoxy Ablefilm, ECF 563	ECF 563-002	1
H1, H2, H3	Header, 2-Pin, Dual row	15912040	3
J1, J2, J3, J4	Connector, 2.92mm Jack PCB Edge Mount .012" pin	145-0701-841	4
p1	PCB Baseplate, 2.0"x0.75"	MM-FD-0010	1
R1	22 Ohms ±1% 0.05W, 1/20W Chip Resistor 0201	ERJ-1GEF22R0C	1
R2	10.2 Ohms ±1% 0.05W, 1/20W Chip Resistor 0201	ERJ-1GEF10R2C	1
R3	5.6 Ohms ±5% 0.05W, 1/20W Chip Resistor 0201	ERJ-1GEJ5R6C	1
R4	3.3 Ohms ±5% 0.05W, 1/20W Chip Resistor 0201	ERJ-1GEJ3R3C	1
SOLD1	Solder Paste, No Clean, SAC305	ANY	1
U1	MMIC, 4-14 GHz, Self-Biased LNA, QFN 4x4 Plastic PKG	MMA047PP4	1

4. Handling Recommendations

Gallium arsenide integrated circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. It is recommended to follow all procedures and guidelines outlined in the Microsemi application note AN01: GaAs MMIC Handling.

5. Ordering Information

For additional ordering information, contact your Microchip sales representative.

Part Number	Package
MMA047PP4	4mm X 4mm, 24L Plastic QFN

5.1. Packing Information

Standard Format
Tape and Reel

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

• **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software

• **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing

• **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)

• Technical Support Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.

• Microchip is willing to work with any customer who is concerned about the integrity of its code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY

OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky,

BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM,

MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial

Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2021, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. ISBN:

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.