

Document Number: MMRF1020-04N Rev. 0, 2/2014

VRoHS

RF Power LDMOS Transistors

N-Channel Enhancement-Mode Lateral MOSFETs

These 100 W symmetrical Doherty RF power LDMOS transistors are designed for cellular base station applications covering the frequency range of 720 to 960 MHz. The transistors are also suitable for wideband power amplifier applications from 600 to 1000 MHz and saturated power levels up to 500 watts.

• Typical Doherty Single-Carrier W-CDMA Performance: V_{DD} = 48 Vdc, I_{DQA} = 860 mA, V_{GSB} = 0.9 Vdc, P_{out} = 100 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
920 MHz	19.5	48.5	7.2	-29.2
940 MHz	19.5	49.5	7.1	-32.0
960 MHz	19.2	48.0	7.0	-35.7

Features

- · Production Tested in a Symmetrical Doherty Configuration
- Greater Negative Gate-Source Voltage Range for Improved Class C
 Operation
- Designed for Digital Predistortion Error Correction Systems
- In Tape and Reel. R3 Suffix = 250 Units, 32 mm Tape Width, 13-inch Reel.

720–960 MHz, 100 W AVG., 48 V RF POWER LDMOS TRANSISTORS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit				
Drain-Source Voltage			V _{DSS}	-0.5, +105	Vdc		
Gate-Source Voltage			V _{GS}	-6.0, +10	Vdc		
Operating Voltage	V _{DD}	55, +0	Vdc				
Storage Temperature Range			T _{stg}	-65 to +150	°C		
Case Operating Temperature Range			T _C	-40 to +150	°C		
Operating Junction Temperature Range ^(1,2)		TJ	-40 to +225	°C			
Table 2. Thermal Characteristics							
Characteristic			Symbol	Value ^(2,3)	Unit		
Thermal Resistance, Junction to Case Case Temperature 86°C, 102 W W-CDMA, 48 Vdc, I _{DQA} = 860 mA,	V _{GSB} = 0.9 Vdd	c, 940 MHz	$R_{ extsf{ heta}JC}$	0.45	°C/W		
Table 3. ESD Protection Characteristics							
Test Methodology			Class				
Human Body Model (per JESD22-A114)				1C			
Machine Model (per EIA/JESD22-A115)		А					
Charge Device Model (per JESD22-C101)				IV			
Table 4. Moisture Sensitivity Level							
Test Methodology	Rating	Packa	Package Peak Temperature Unit				
Per JESD22-A113, IPC/JEDEC J-STD-020	3		260		°C		
Table 5. Electrical Characteristics (T _A = $25^{\circ}C$ unless otherwise no	oted)						
Characteristic	Symbol	Min	Тур	Max	Unit		
Off Characteristics ⁽⁴⁾							
Zero Gate Voltage Drain Leakage Current (V _{DS} = 105 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	-	10	μAdc		
Zero Gate Voltage Drain Leakage Current (V _{DS} = 48 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc		
Gate-Source Leakage Current $(V_{GS} = 5 \text{ Vdc}, V_{DS} = 0 \text{ Vdc})$	I _{GSS}		_	1	μAdc		
On Characteristics ⁽⁴⁾	1						
Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 460 \mu \text{Adc})$	V _{GS(th)}	1.3	1.8	2.3	Vdc		
Gate Quiescent Voltage $(V_{DD} = 48 \text{ Vdc}, I_{DA} = 860 \text{ mAdc}, \text{Measured in Functional Test})$	V _{GS(Q)}	2.0	2.5	3.0	Vdc		
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 1.3 Adc)	V _{DS(on)}	0.1	0.21	0.3	Vdc		

1. Continuous use at maximum temperature will affect MTTF.

2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/ Application Notes - AN1955.

4. Each side of device measured separately.

(continued)

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

			, .	•			
	Characteristic		Symbol	Min	Тур	Max	Unit
_							

Functional Tests ^(1,2,3) (In Freescale Doherty Test Fixture, 50 ohm system) $V_{DD} = 48$ Vdc, $I_{DQA} = 860$ mA, $V_{GSB} = 0.9$ Vdc, $P_{out} = 100$ W Avg., f = 920 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ± 5 MHz Offset.

0					
Power Gain	G _{ps}	18.5	19.5	21.5	dB
Drain Efficiency	η _D	45.0	48.5	—	%
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF	PAR	6.6	7.2	—	dB
Adjacent Channel Power Ratio	Channel Power Ratio ACPR29.2 -27.0				
Load Mismatch (In Freescale Test Fixture, 50 ohm system) I _{DQA} = 860 m.	A, V _{GSB} = 0.9	Vdc, f = 940	MHz		
VSWR 10:1 at 52 Vdc. 500 W Pulsed Output Power No Device [

VSWR 10:1 at 52 Vdc, 500 W Pulsed Output Power (3 dB Input Overdrive from 200 W Pulsed Rated Power)

Typical Performances⁽²⁾ (In Freescale Doherty Test Fixture, 50 ohm system) V_{DD} = 48 Vdc, I_{DQA} = 860 mA, V_{GSB} = 0.9 Vdc, 920-960 MHz Bandwidth

Pout @ 1 dB Compression Point, CW	P1dB	_	200	_	W
Pout @ 3 dB Compression Point (4)	P3dB	_	500	_	W
AM/PM (Maximum value measured at the P3dB compression point across the 920-960 MHz frequency range)	Φ		21		o
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}	_	43	_	MHz
Gain Flatness in 40 MHz Bandwidth @ P _{out} = 100 W Avg.	G _F	_	0.3	_	dB
Gain Variation over Temperature (-30°C to +85°C)	ΔG		0.01		dB/°C
Output Power Variation over Temperature (-30°C to +85°C)	∆P1dB		0.0075		dB/°C

1. Part internally input matched.

2. Measurement made with device in a symmetrical Doherty configuration.

3. Measurement made with device in straight lead configuration before any lead forming operation is applied.

4. P3dB = P_{avg} + 7.0 dB where P_{avg} is the average output power measured using an unclipped W-CDMA single-carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.

Figure 2. MMRF1020-04NR3 Test Circuit Component Layout

Table 6. MMRF1020-04NR3 Test Cir	cuit Component Desig	gnations and Values
----------------------------------	----------------------	---------------------

Part	Description	Part Number	Manufacturer
C1, C6, C13, C20	33 pF Chip Capacitors	ATC100B330JT500XT	ATC
C2, C7, C17, C21	4.3 pF Chip Capacitors	ATC100B4R3CT500XT	ATC
C3, C8	6.8 pF Chip Capacitors	ATC100B6R8CT500XT	ATC
C4, C9. C14, C22	47 pF Chip Capacitors	ATC100B470JT500XT	ATC
C5, C10	2.2 μF Chip Capacitors	C3225X7R1H225K250AB	TDK
C11, C18	12 pF Chip Capacitors	ATC100B120JT500XT	ATC
C12, C19	8.2 pF Chip Capacitors	ATC100B8R2CT500XT	ATC
C15, C23	10 μF Chip Capacitors	C5750X7S2A106M230KB	TDK
C16, C24	220 μF, 100 V Electrolytic Capacitors	MCGPR100V227M16X26-RH	Multicomp
C25	0.5 pF Chip Capacitor	ATC100B0R5BT500XT	ATC
C26	0.3 pF Chip Capacitor	ATC100B0R3BT500XT	ATC
C27	0.8 pF Chip Capacitor	ATC100B0R8BT500XT	ATC
R1, R2	1.5 Ω, 1/4 W Chip Resistors	RC1206FR-071R5L	Yageo
R3	50 Ω , 30 W Termination	RFP-375375N6Z50-2	Anaren
Z1	800-1000 MHz Band, 90°, 3 dB Hybrid Coupler	X3C09P1-03S	Anaren
PCB	Rogers RO4350B, 0.020", $\varepsilon_r = 3.66$	-	MTL

TYPICAL CHARACTERISTICS

Figure 3. Single-Carrier Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ P_{out} = 100 Watts Avg.

Figure 4. Intermodulation Distortion Products versus Two-Tone Spacing

Figure 6. Single-Carrier W-CDMA Power Gain, Drain Efficiency and ACPR versus Output Power

Figure 7. Broadband Frequency Response

Table 7. Carrier Side Load Pull Performance — Maximum Power Tuning

 V_{DD} = 48 Vdc, I_{DQ} = 862 mA, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

			Max Output Power						
				P1dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)	
920	2.39 – j3.65	2.32 + j3.41	1.84 + j0.12	21.3	54.1	260	59.9	-14	
940	2.54 – j4.03	2.49 + j3.84	1.85 + j0.11	21.3	54.1	258	59.9	-14	
960	2.90 – j4.64	2.76 + j4.31	1.77 + j0.13	21.2	54.1	259	59.8	-15	

			Max Output Power						
				P3dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)	
920	2.39 – j3.65	2.29 + j3.66	2.11 – j0.03	19.1	54.8	301	61.1	-19	
940	2.54 – j4.03	2.45 + j4.12	2.04 – j0.03	19.2	54.8	299	60.8	-18	
960	2.90 – j4.64	2.74 + j4.63	1.97 – j0.01	19.1	54.8	300	60.6	-19	

(1) Load impedance for optimum P1dB power.

(2) Load impedance for optimum P3dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

 Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Table 8. Carrier Side Load Pull Performance — Maximum Drain Efficiency Tuning

 V_{DD} = 48 Vdc, I_{DQ} = 862 mA, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

				Max Drain Efficiency						
				P1dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)		
920	2.39 – j3.65	2.11 + j3.81	1.51 + j1.85	24.3	51.5	140	71.8	-20		
940	2.54 – j4.03	2.27 + j4.24	1.43 + j1.84	24.3	51.4	138	71.9	-21		
960	2.90 – j4.64	2.60 + j4.68	1.46 + j1.61	23.8	52.2	164	71.6	-20		

			Max Drain Efficiency								
				P3dB							
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)			
920	2.39 – j3.65	2.22 + j3.95	1.92 + j1.53	21.5	53.2	207	71.6	-25			
940	2.54 – j4.03	2.38 + j4.45	1.74 + j1.57	21.7	52.9	197	71.8	-27			
960	2.90 – j4.64	2.66 + j4.94	1.59 + j1.48	21.5	53.1	206	72.0	-27			

(1) Load impedance for optimum P1dB efficiency.

(2) Load impedance for optimum P3dB efficiency.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Table 9. Peaking Side Load Pull Performance — Maximum Power Tuning

 V_{DD} = 48 Vdc, V_{GSB} = 0.9 Vdc, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

			Max Output Power						
				P1dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)	
920	2.39 – j3.65	2.33 + j3.43	1.52 + j0.07	16.8	54.7	294	66.5	-25	
940	2.54 – j4.03	2.44 + j3.87	1.44 + j0.21	16.9	54.6	291	66.9	-25	
960	2.90 – j4.64	2.64 + j4.34	1.58 + j0.24	17.0	54.5	283	66.5	-25	

			Max Output Power							
				P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)		
920	2.39 – j3.65	2.28 + j3.69	1.68 – j0.06	14.7	55.3	335	66.8	-29		
940	2.54 – j4.03	2.40 + j4.15	1.60 + j0.13	14.9	55.2	332	68.0	-30		
960	2.90 – j4.64	2.61 + j4.66	1.71 + j0.14	14.9	55.1	325	66.8	-30		

(1) Load impedance for optimum P1dB power.

(2) Load impedance for optimum P3dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

 Z_{in} = Impedance as measured from gate contact to ground.

 Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Table 10. Peaking Side Load Pull Performance — Maximum Drain Efficiency Tuning

 V_{DD} = 48 Vdc, V_{GSB} = 0.9 Vdc, Pulsed CW, 10 $\mu sec(on),$ 10% Duty Cycle

			Max Drain Efficiency							
				P1dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)		
920	2.39 – j3.65	2.22 + j3.39	1.81 + j1.79	17.5	52.4	174	78.9	-29		
940	2.54 – j4.03	2.27 + j3.80	1.35 + j2.23	17.6	51.2	131	81.4	-35		
960	2.90 – j4.64	2.43 + j4.27	1.24 + j2.22	17.6	51.2	131	81.6	-36		

				Max	c Drain Efficie	ency			
				P3dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)	
920	2.39 – j3.65	2.20 + j3.66	2.07 + j1.45	15.5	53.6	231	77.1	-33	
940	2.54 – j4.03	2.31 + j4.12	1.86 + j1.49	15.7	53.6	231	78.9	-36	
960	2.90 – j4.64	2.50 + j4.62	1.70 + j1.64	15.8	53.4	218	78.7	-37	

(1) Load impedance for optimum P1dB efficiency.

(2) Load impedance for optimum P3dB efficiency.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

P1dB - TYPICAL CARRIER SIDE LOAD PULL CONTOURS - 940 MHz

Figure 8. P1dB Load Pull Output Power Contours (dBm)

P3dB - TYPICAL CARRIER SIDE LOAD PULL CONTOURS - 940 MHz

Figure 12. P3dB Load Pull Output Power Contours (dBm)

Figure 13. P3dB Load Pull Efficiency Contours (%)

NOTE: (P) = Maximum Output Power (Ê) = Maximum Drain Efficiency

Gain Drain Efficiency Linearity

Output Power

P1dB - TYPICAL PEAKING SIDE LOAD PULL CONTOURS - 940 MHz

Figure 16. P1dB Load Pull Output Power Contours (dBm)

Figure 17. P1dB Load Pull Efficiency Contours (%)

NOTE: (P) = Maximum Output Power (\bar{E}) = Maximum Drain Efficiency

P3dB - TYPICAL PEAKING SIDE LOAD PULL CONTOURS - 940 MHz

Figure 20. P3dB Load Pull Output Power Contours (dBm)

Figure 21. P3dB Load Pull Efficiency Contours (%)

NOTE: (P) = Maximum Output Power (Ê) = Maximum Drain Efficiency

Gain Drain Efficiency Linearity Output Power

PACKAGE DIMENSIONS

BOTTOM VIEW VIEW G-G

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NOT TO SCALE		
TITLE:		DOCUMENT NO): 98ASA10833D	REV: A	
UM 780-4 Straight i fad		CASE NUMBER	10 FEB 2010		
		STANDARD: NO	DN-JEDEC		

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE & DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSION A1 APPLIES WITHIN ZONE "J" ONLY.
- 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. THE DIMENSIONS D1 AND E2 REPRESENT THE VALUES BETWEEN THE TWO OPPOSITE POINTS ALONG THE EDGES OF EXPOSED AREA OF HEAT SLUG.
- 9. DIMPLED HOLE REPRESENTS INPUT SIDE.

	INCH		MILLIMETER				INCH	MILLIMETER		
DIM	MIN	MAX	MIN	MAX	DIM	MIN MAX		MIN	MAX	
А	0.148	.152	3.76	3.86	b	.147	.153	3.73	3 3.89	
A1	.059	.065	1.50	1.65	c1	.007	.011	0.18	0.28	
D	.808	.812	20.52	20.62	е	.3	50 BSC	8	3.89 BSC	
D1	.720		18.29		e1	.721	.729	18.3	1 18.52	
Е	.762	.770	19.36	19.56						
E1	.390	.394	9.91	10.01	aaa		.004	0.10		
E2	.306		7.77							
E3	.383	.387	9.72	9.83						
F	.025	5 BSC	0	.635 BSC						
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA					AL OUT	L OUTLINE PRINT VERS			SION NOT TO SCALE	
TITLE:	TITLE:						DOCUMENT NO: 98ASA10833D REV: A			
UM /80-4					CASE NUMBER: 2023-02 10 FEB			10 FEB 2010		
STRAIGHT LEAD						STANDARD: NON-JEDEC				

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NO	T TO SCALE
TITLE:		DOCUME	NT NO: 98ASA10834D	REV: D
OM-780G-4L		STANDAF	RD: NON-JEDEC	
				14 NOV 2013

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT	TO SCALE
TITLE:		DOCUME	NT NO: 98ASA10834D	REV: D
OM-780G-4L		STANDAF	RD: NON-JEDEC	
			14	NOV 2013

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE H IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.

A. DIMENSIONS DD AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 INCH (0.15 MM) PER SIDE. DIMENSIONS DD AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.

5. DIMENSION 65 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 INCH (0.13 MM) TOTAL IN EXCESS OF THE 66 DIMENSION AT MAXIMUM MATERIAL CONDITION.

6. DATUMS A AND B TO BE DETERMINED AT DATUM PLANE H.

AND E2 REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. THE DIMENSIONS D1 AND E2 REPRESENT THE VALUES BETWEEN THE TWO OPPOSITE POINTS ALONG THE EDGES OF EXPOSED AREA OF HEAT SLUG.

8. DIMPLED HOLE REPRESENTS INPUT SIDE.

9. DIMENSION A1 IS MEASURED WITH REFERENCE TO DATUM D. THE POSITIVE VALUE IMPLIES THAT THE BOTTOM OF PACKAGE IS HIGHER THAN THE BOTTOM OF THE LEAD.

	INCH		MILLIMETER			INCH		MILLIMETER		
DIM	MIN	MAX	MIN	MAX	DIM	I MIN MAX		MIN	MAX	
AA	.148	.152	3.76	3.86	bb	.147	.153	3.73	3.89	
A1	002	.002	-0.05	o.05	c1	.007	.011	0.18	0.28	
DD	.808	.812	20.52	20.62	е	0.	350 BSC	8.89	BSC	
D1	.720		18.29		e1	.721	.729	18.31	18.52	
E	.470	.482	11.94	12.24	Θ	0.	8.	0.	8'	
E1	.390	.394	9.91	10.01	aaa		.004	0.10		
E2	.306		7.77		bbb		.006	6 0.15		
E3	.383	.387	9.73	9.83	ccc		.010	0.25		
L	.018	.024	0.46	0.61						
L1	.010	BSC	0.	25 BSC						
© FREESCALE SEMICONDUCTOR, INC. MECHANICAL OU						TLINE	PRINT VER	SION NOT 1	O SCALE	
TITLE:							DOCUMENT NO: 98ASA10834D REV: D			
OM-780G-4L							STANDARD: NON-JEDEC			
								14	NOV 2013	

PRODUCT DOCUMENTATION AND SOFTWARE

Refer to the following documents, software and tools to aid your design process.

Application Notes

- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- **Engineering Bulletins**
- EB212: Using Data Sheet Impedances for RF LDMOS Devices
- Software
- Electromigration MTTF Calculator

For Software and Tools, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description			
0	Feb. 2014	Initial Release of Data Sheet			