. .:eescale Semiconductor Technical Data

RF Power LDMOS Transistors High Ruggedness N-Channel

Enhancement-Mode Lateral MOSFETs

RF power transistors suitable for both narrowband and broadband CW or pulse applications operating at frequencies from 1.8 to 2000 MHz, such as military radio communications and radar. These devices are fabricated using Freescale's enhanced ruggedness platform and are suitable for use in applications where high VSWRs are encountered.

Typical Performance: V_{DD} = 50 Vdc IMD (1) Pout G_{ps} (dB) Frequency ηD Signal Type (W) (dBc) (MHz) (%) 1.8 to 30 (2,6) Two-Tone 25 PEP 25 51 -30 (10 kHz spacing) 30-512 ^(3,6) Two-Tone 25 PEP 17.1 30.1 -32 (200 kHz spacing) 512 (4) Pulse (100 µsec, 25 Peak 25.4 74.5 20% Duty Cycle) 512 (4) CW 25 25.5 74.7 1030 (5) CW 25 22.5 60

Load Mismatch/Ruggedness

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage	Result
30 (2)	CW	>65:1 at all Phase Angles	0.23 (3 dB Overdrive)	50	No Device Degradation
512 (3)	CW		1.6 (3 dB Overdrive)		
512 (4)	Pulse (100 μsec, 20% Duty Cycle)		0.14 Peak (3 dB Overdrive)		
512 (4)	CW		0.14 (3 dB Overdrive		
1030 (5)	CW		0.34 (3 dB Overdrive		

- 1. Distortion products are referenced to one of two tones.
- 2. Measured in 1.8-30 MHz broadband reference circuit.
- 3. Measured in 30-512 MHz broadband reference circuit.
- 4. Measured in 512 MHz narrowband test circuit.
- 5. Measured in 1030 MHz narrowband test circuit.
- 6. The values shown are the minimum measured performance numbers across the indicated frequency range.

Features

- Wide Operating Frequency Range
- Extreme Ruggedness
- Unmatched, Capable of Very Broadband Operation
- Integrated Stability Enhancements
- Low Thermal Resistance
- Extended ESD Protection Circuit
- In Tape and Reel. R1 Suffix = 500 Units, 24 mm Tape Width, 13-inch Reel.

© Freescale Semiconductor, Inc., 2013. All rights reserved.

Document Number: MMRF1304N Rev. 0, 12/2013

RoHS

MMRF1304NR1 MMRF1304GNR1

1.8-2000 MHz, 25 W, 50 V WIDEBAND RF POWER LDMOS TRANSISTORS

Note: The backside of the package is the source terminal for the transistor.

(Top View)

Figure 1. Pin Connections

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +133	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature	T _C	-40 to +150	°C
Operating Junction Temperature (1)	TJ	-40 to +225	°C
Table 2. Thermal Characteristics	·		
Characteristic	Symbol	Value ⁽²⁾	Unit
Thermal Resistance, Junction to Case CW: Case Temperature 80°C, 25 W CW, 50 Vdc, I _{DQ} = 10 mA, 512 MHz	R _{θJC}	1.2	°C/W
Thermal Impedance, Junction to Case Pulse: Case Temperature 77°C, 25 W Peak, 100 μsec Pulse Width, 20% Duty Cycle, 50 Vdc, I _{DQ} = 10 mA, 512 MHz	Z _{θJC}	0.29	°C/W
Table 3. ESD Protection Characteristics	·		
Test Methodology		Class	

<u> </u>	
Human Body Model (per JESD22-A114)	2, passes 2500 V
Machine Model (per EIA/JESD22-A115)	B, passes 250 V
Charge Device Model (per JESD22-C101)	IV, passes 2000 V

Table 4. Moisture Sensitivity Level

Г

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 5. Electrical Characteristics $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics					
$ \begin{array}{l} \mbox{Gate-Source Leakage Current} \\ \mbox{(V}_{GS} = 5 \mbox{ Vdc}, \mbox{ V}_{DS} = 0 \mbox{ Vdc}) \end{array} $	I _{GSS}	_	_	400	nAdc
Drain-Source Breakdown Voltage $(V_{GS} = 0 \text{ Vdc}, I_D = 50 \text{ mA})$	V _{(BR)DSS}	133	142	—	Vdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	2	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 100 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	—	_	7	μAdc
On Characteristics					
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 85 μAdc)	V _{GS(th)}	1.5	2.0	2.5	Vdc
Gate Quiescent Voltage (V _{DD} = 50 Vdc, I _D = 10 mAdc, Measured in Functional Test)	V _{GS(Q)}	2.0	2.4	3.0	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 210 mAdc)	V _{DS(on)}	—	0.28	—	Vdc
Dynamic Characteristics					

Reverse Transfer Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	_	0.26	_	pF
Output Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{oss}	—	14.2	_	pF
Input Capacitance (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)	C _{iss}	—	39.2	—	pF

1. Continuous use at maximum temperature will affect MTTF.

 Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes – AN1955.

(continued)

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic Symbol Min	Тур	Max	Unit
---------------------------	-----	-----	------

Functional Tests ⁽¹⁾ (In Freescale Test Fixture, 50 ohm system) V_{DD} = 50 Vdc, I_{DQ} = 10 mA, P_{out} = 25 W Peak (5 W Avg.), f = 512 MHz, 100 μ sec Pulse Width, 20% Duty Cycle

Power Gain	G _{ps}	24.0	25.4	27.0	dB
Drain Efficiency	η_{D}	70.0	74.5		%
Input Return Loss	IRL		-16	-10	dB

Load Mismatch/Ruggedness (In Freescale Test Fixture, 50 ohm system) I_{DQ} = 10 mA

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage, V _{DD}	Result
512	Pulse (100 μsec, 20% Duty Cycle)	>65:1 at all Phase Angles	0.14 Peak (3 dB Overdrive)	50	No Device Degradation
	CW		0.14 (3 dB Overdrive)		

1. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts.

TYPICAL CHARACTERISTICS

Figure 3. Normalized V_{GS} and Quiescent Current versus Case Temperature

Slope (mV/°C)
-2.160
-1.790
-1.760
-1.680

Note: MTTF value represents the total cumulative operating time under indicated test conditions.

MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

Figure 4. MTTF versus Junction Temperature - CW

512 MHz NARROWBAND PRODUCTION TEST FIXTURE

*C5, C9 and C10 are mounted vertically.

Figure 5. MMRF1304NR1 Narrowband Test Circuit Component Layout - 512 MHz

Part	Description	Part Number	Manufacturer
B1, B2	Long Ferrite Beads	2743021447	Fair-Rite
C1	22 $\mu\text{F},$ 35 V Tantalum Capacitor	T491X226K035AT	Kemet
C2, C13	0.1 μF Chip Capacitors	CDR33BX104AKWY	AVX
C3, C14	0.01 μF Chip Capacitors	C0805C103K5RAC	Kemet
C4, C11, C12	180 pF Chip Capacitors	ATC100B181JT300XT	ATC
C5	18 pF Chip Capacitor	ATC100B180JT500XT	ATC
C6	2.7 pF Chip Capacitor	ATC100B2R7BT500XT	ATC
C7	15 pF Chip Capacitor	ATC100B150JT500XT	ATC
C8	36 pF Chip Capacitor	ATC100B360JT500XT	ATC
C9	4.3 pF Chip Capacitor	ATC100B4R3CT500XT	ATC
C10	13 pF Chip Capacitor	ATC100B130JT500XT	ATC
C15	470 μF, 63 V Electrolytic Capacitor	MCGPR63V477M13X26-RH	Multicomp
L1	33 nH Inductor	1812SMS-33NJLC	Coilcraft
L2	12.5 nH Inductor	A04TJLC	Coilcraft
L3	82 nH Inductor	1812SMS-82NJLC	Coilcraft
РСВ	$0.030'', \epsilon_r = 2.55$	AD255A	Arlon

Table 6. MMRF 1304NRT Narrowband Test Circuit Component Designations and values — 51	2 MHz
--	-------

Figure 6. MMRF1304NR1 Narrowband Test Circuit Schematic — 512 MHz

Microstrip	Description	
Z1	0.235" × 0.082" Microstrip	
Z2	0.042" × 0.082" Microstrip	
Z3	0.682" × 0.082" Microstrip	
Z4*	0.200" × 0.060" Microstrip	
Z5	0.324" × 0.060" Microstrip	
Z6*	0.200" × 0.060" Microstrip	
Z7	0.067" × 0.082" Microstrip	
Z8	0.142" × 0.082" Microstrip	
Z9	0.481″ × 0.082″ Microstrip	
Z10	0.190″ × 0.270″ Microstrip	

Table 7. MMRF1304NR	I Narrowband	Test Circuit	Microstrips	s — 512 MHz
---------------------	--------------	---------------------	-------------	-------------

Description
0.475" × 0.270" Microstrip
0.091" × 0.082" Microstrip
0.170" × 0.082" Microstrip
0.670″ × 0.082″ Microstrip
0.280" × 0.082" Microstrip
0.413" × 0.082" Microstrip
0.259" × 0.082" Microstrip
0.761" × 0.082" Microstrip
0.341" × 0.082" Microstrip

* Line length includes microstrip bends

TYPICAL CHARACTERISTICS — 512 MHz

Figure 8. CW Output Power versus Input Power

versus CW Output Power

512 MHz NARROWBAND PRODUCTION TEST FIXTURE

Figure 10. Narrowband Series Equivalent Source and Load Impedance — 512 MHz

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMENT NO): 98ASH98117A	REV: K
IU-270 Surface Mount	г	CASE NUMBER	29 JUN 2007	
SONTACE MOON	I	STANDARD: JE	DEC TO-270 AA	

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMENT NO): 98ASH98117A	REV: K
SURFACE MOUN	т	CASE NUMBER	: 1265–09	29 JUN 2007
SONTACE MOON	I	STANDARD: JE	DEC TO-270 AA	

NP

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D1" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D1 AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSION "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSION "A2" APPLIES WITHIN ZONE "J" ONLY.
- 8. DIMENSIONS "D" AND "E2" DO NOT INCLUDE MOLD PROTRUSION. OVERALL LENGTH INCLUDING MOLD PROTRUSION SHOULD NOT EXCEED 0.430 INCH FOR DIMENSION "D" AND 0.080 INCH FOR DIMENSION "E2". DIMENSIONS "D" AND "E2" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -D-.

	IN	ICH	MI	LIMETER			INCH	М	ILLIMETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
А	.078	.082	1.98	2.08	F	.0	25 BSC	(D.64 BSC
A1	.039	.043	0.99	1.09	b1	.193	.199	4.90	5.06
A2	.040	.042	1.02	1.07	c1	.007	.011	0.18	3 0.28
D	.416	.424	10.57	10.77	aaa		.004		0.10
D1	.378	.382	9.60	9.70					
D2	.290		7.37						
D3	.016	.024	0.41	0.61					
E	.436	.444	11.07	11.28					
E1	.238	.242	6.04	6.15					
E2	.066	.074	1.68	1.88					
E3	.150		3.81						
E4	.058	.066	1.47	1.68					
E5	.231	.235	5.87	5.97					
© I	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA				L OUT	LINE	PRINT VERS	SION NC	T TO SCALE
TITLE:			70		DOCU	MENT NO): 98ASH98117/	4	REV: K
					CASE	NUMBER	2: 1265-09		29 JUN 2007
SURFACE MOUNI					STAN	DARD: JE	DEC TO-270 /	٩A	

STYLE 1:			
PIN	1	—	DRAIN
PIN	2	—	GATE
PIN	3	—	SOURCE

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMENT NO): 98ASA99301D	REV: C
		CASE NUMBER	: 1265A—03	02 JUL 2007
GOLE WING		STANDARD: JE	DEC TO-270 BA	

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMENT NO): 98ASA99301D	REV: C
		CASE NUMBER	: 1265A-03	02 JUL 2007
GOLL WING		STANDARD: JE	DEC TO-270 BA	

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D1" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D1 AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSION b1 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE b1 DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSIONS "D" AND "E2" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .003 PER SIDE. DIMENSIONS "D AND "E2" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -D-.

STYLE 1: PIN 1 – DRAIN PIN 2 – GATE PIN 3 – SOURCE

	IN	СН	MIL	LIMETER		INCH MILLIMETER		LLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
Α	.078	.082	1.98	2.08	L	.018	.024	0.46	6 0.61
A1	.001	.004	0.02	0.10	L1		01 BSC	0	D.25 BSC
A2	.077	.088	1.96	2.24	b1	.193	.199	4.90	5.06
D	.416	.424	10.57	10.77	c1	.007	.011	0.18	3 0.28
D1	.378	.382	9.60	9.70	е	2.	8'	2.	8.
D2	.290	—	7.37	_	aaa		.004		0.10
D3	.016	.024	0.41	0.61					
E	.316	.324	8.03	8.23					
E1	.238	.242	6.04	6.15					
E2	.066	.074	1.68	1.88					
E3	.150	—	3.81	—					
E4	.058	.066	1.47	1.68					
E5	.231	.235	5.87	5.97					
© F	REESCALE SEM ALL RIGHT	ICONDUCTOR, S RESERVED.	INC.	MECHANIC	AL OUT	ΓLINE	PRINT VER	SION NC	T TO SCALE
TITLE:		TO 07	70		DOCL	JMENT NO): 98ASA9930	1D	REV: C
		10-2		CASE NUMBER: 1265A-03 02 JU			02 JUL 2007		
		GULL N	nn G		STAN	IDARD: JE	DEC T0-270	BA	•

PRODUCT DOCUMENTATION

Refer to the following documents to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Over-Molded Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over-Molded Plastic Packages
- · AN3789: Clamping of High Power RF Transistors and RFICs in Over-Molded Plastic Packages

Engineering Bulletins

- EB212: Using Data Sheet Impedances for RF LDMOS Devices
- EB38: Measuring the Intermodulation Distortion of Linear Amplifiers

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Dec. 2013	Initial Release of Data Sheet