6-Pin DIP Zero-Cross Triac Driver Optocoupler (800 V Peak)

MOC3081M, MOC3082M, MOC3083M

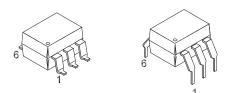
Description

The MOC3081M, MOC3082M and MOC3083M devices consist of a GaAs infrared emitting diode optically coupled to a monolithic silicon detector performing the function of a zero voltage crossing bilateral triac driver.

They are designed for use with a discrete power triac in the interface of logic systems to equipment powered from 240 VAC lines, such as solid–state relays, industrial controls, motors, solenoids and consumer appliances, etc.

Features

- Simplifies Logic Control of 240 VAC Power
- Zero Voltage Crossing to Minimize Conducted and Radiated Line Noise
- 800 V Peak Blocking Voltage
- Superior Static dv/dt
 - ◆ 1500 V/µs Typical, 600 V/µs Guaranteed
- Safety and Regulatory Approvals
 - UL1577, 4,170 VAC_{RMS} for 1 Minute
 - ◆ DIN EN/IEC60747-5-5
- These are Pb–Free Devices


Applications

- Solenoid/Valve Controls
- Lighting Controls
- Static Power Switches
- AC Motor Starters
- Temperature Controls
- E.M. Contactors
- AC Motor Drives
- Solid State Relays

ON Semiconductor®

www.onsemi.com

PDIP6 8.51x6.35, 2.54P CASE 646BY

PDIP6 8.51x6.35, 2.54P CASE 646BZ

PDIP6 8.51x6.35, 2.54P CASE 646BX

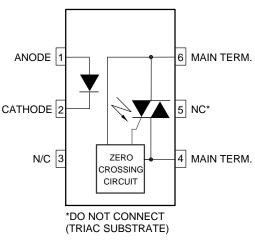


Figure 1. Schematic

ORDERING INFORMATION

See detailed ordering and shipping information on page 9 of this data sheet.

SAFETY AND INSULATION RATINGS

As per DIN EN/IEC 60747–5–5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter		Characteristics
Installation Classifications per DIN VDE 0110/1.89 Table 1, For	< 150 V _{RMS}	I–IV
Rated Mains Voltage	< 300 V _{RMS}	I–IV
Climatic Classification	Classification	
Pollution Degree (DIN VDE 0110/1.89)		2
Comparative Tracking Index		175

Symbol	Parameter	Value	Unit
V_{PR}	Input–to–Output Test Voltage, Method A, $V_{IORM} x 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10$ s, Partial Discharge < 5 pC	1360	Vpeak
	Input–to–Output Test Voltage, Method B, $V_{IORM} x 1.875 = V_{PR}$, 100% Production Test with $t_m = 1 $ s, Partial Discharge < 5 pC	1594	Vpeak
V _{IORM}	Maximum Working Insulation Voltage	850	Vpeak
V _{IOTM}	Highest Allowable Over–Voltage	6000	Vpeak
	External Creepage	≥7	mm
	External Clearance	≥7	mm
	External Clearance (for Option TV, 0.4" Lead Spacing)	≥ 10	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.5	mm
R _{IO}	Insulation Resistance at T_S , V_{IO} = 500 V	> 10 ⁹	Ω

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameters	Value	Unit
Total Device			•
T _{STG}	Storage Temperature	-40 to 150	°C
T _{OPR}	Operating Temperature	-40 to 85	°C
TJ	Junction Temperature Range	-40 to 100	°C
T _{SOL}	Lead Solder Temperature	260 for 10 seconds	°C
Total Device Power Dissipation at 25°C Ambient		250	mW
P _D	Derate Above 25°C	2.94	mW/°C
Emitter			
١ _F	Continuous Forward Current	60	mA
V _R	Reverse Voltage	6	V
P	Total Power Dissipation at 25°C Ambient	120	mW
P _D	Derate Above 25°C	1.41	mW/°C
Detector			
V _{DRM}	Off-State Output Terminal Voltage	800	V
I _{TSM}	Peak Non-Repetitive Surge Current (Single Cycle 60 Hz Sine Wave)	1	A
P	Total Power Dissipation at 25°C Ambient	150	mW
PD	Derate Above 25°C	1.76	mW/°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS

 $T_A = 25^{\circ}C$ unless otherwise specified

INDIVIDUAL COMPONENT CHARACTERISTICS

Symbol	Parameters	Test Conditions	Min.	Тур.	Max.	Unit
Emitter						
V_{F}	Input Forward Voltage	I _F = 30 mA		1.3	1.5	V
I _R	Reverse Leakage Current	V _R = 6 V		0.005	100	μΑ
Detector						
I _{DRM1}	Peak Blocking Current, Either Direction	$V_{DRM} = 800 V, I_F = 0^{(1)}$		10	500	nA
dv/dt	Critical Rate of Rise of Off-State Voltage	I _F = 0 (Figure 10) ⁽²⁾	600	1500		V/μs

1. Test voltage must be applied within dv/dt rating.

2. This is static dv/dt. See Figure 11 for test circuit. Commutating dv/dt is a function of the load-driving thyristor(s) only.

TRANSFER CHARACTERISTICS

Symbol	DC Characteristics	Test Conditions	Device	Min.	Тур.	Max.	Unit
I _{FT}	LED Trigger Current (Rated I _{FT})	Main Terminal Voltage = 3 V ⁽³⁾	MOC3081M			15	mA
		$voltage = 5 v^{(0)}$	MOC3082M			10	
			MOC3083M			5	
V _{TM}	Peak On–State Voltage, Either Direction	I _{TM} = 100 mA peak, I _F = rated I _{FT}	All		1.8	3.0	V
I _H	Holding Current, Either Direction		All		500		μA

All devices are guaranteed to trigger at an I_F value less than or equal to max I_{FT}. Therefore, recommended operating I_F lies between max I_{FT} (15 mA for MOC3081M, 10 mA for MOC3082M, 5 mA for MOC3083M) and absolute maximum I_F (60 mA).

ZERO CROSSING CHARACTERISTICS

Symbol	Parameters	Test Conditions	Min.	Тур.	Max.	Unit
V _{INH}	Inhibit Voltage (MT1–MT2 voltage above which device will not trigger)	I _F = Rated I _{FT}		12	20	V
I _{DRM2}	Leakage in Inhibited State	I _F = Rated I _{FT} , V _{DRM} = 800 V, off-state			2	mA

ISOLATION CHARACTERISTICS

Symbol	Parameters	Test Conditions	Min.	Тур.	Max.	Unit
V _{ISO}	Isolation Voltage ⁽⁴⁾	f = 60 Hz, t = 1 Minute	4170			VAC_{RMS}
R _{ISO}	Isolation Resistance	$V_{I-O} = 500 V_{DC}$		10 ¹¹		Ω
C _{ISO}	Isolation Capacitance	V = 0 V, f = 1 MHz		0.2		pF

4. Isolation voltage, V_{ISO}, is an internal device dielectric breakdown rating. For this test, pins 1 and 2 are common, and pins 4, 5 and 6 are common.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL PERFORMANCE CURVES

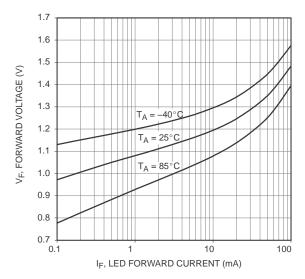


Figure 2. LED Forward Voltage vs. Forward Current

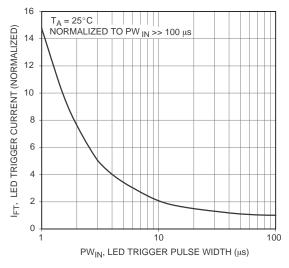


Figure 4. LED Current Required to Trigger vs. LED Pulse Width

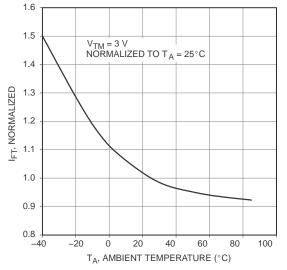


Figure 3. Trigger Current vs. Temperature

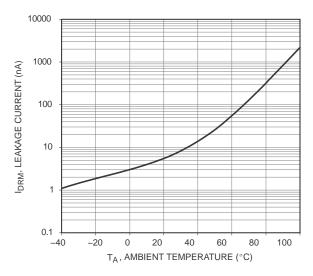
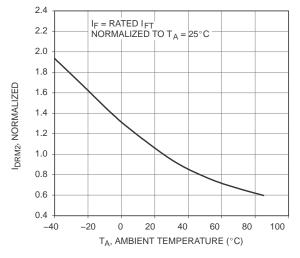
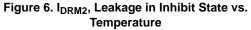




Figure 5. Leakage Current, I_{DRM} vs. Temperature

TYPICAL PERFORMANCE CURVES (Continued)

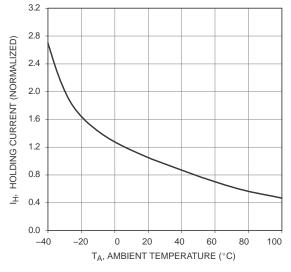


Figure 8. I_H, Holding Current vs. Temperature

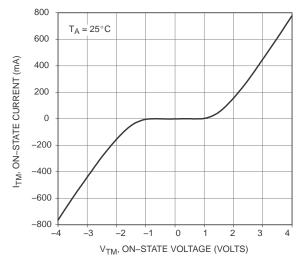


Figure 7. On–State Characteristics

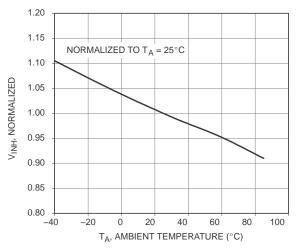
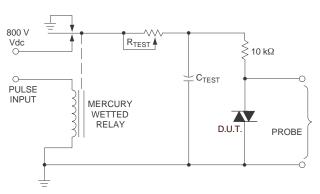
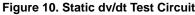




Figure 9. Inhibit Voltage vs. Temperature

- 1. The mercury wetted relay provides a high speed repeated pulse to the D.U.T.
- 2. 100x scope probes are used, to allow high speeds and voltages.

3. The worst–case condition for static dv/dt is established by triggering the D.U.T. with a normal LED input current, then removing the current. The variable R_{TEST} allows the dv/dt to be gradually increased until the D.U.T. continues to trigger in response to the applied voltage pulse, even after the LED current has been removed. The dv/dt is then decreased until the D.U.T. stops triggering. τ_{RC} is measured at this point and recorded.

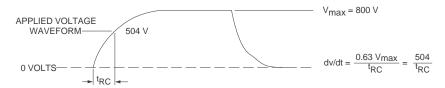


Figure 11. Static dv/dt Test Waveform

Typical circuit for use when hot line switching is required. In this circuit the "hot" side of the line is switched and the load connected to the cold or neutral side. The load may be connected to either the neutral or hot line.

 R_{IN} is calculated so that I_F is equal to the rated I_{FT} of the part, 15 mA for the MOC3081M, 10 mA for the

MOC3082M, and 5 mA for the MOC3083M. The 39 Ω resistor and 0.01 μF capacitor are for snubbing of the triac and may or may not be necessary depending upon the particular triac and load use.

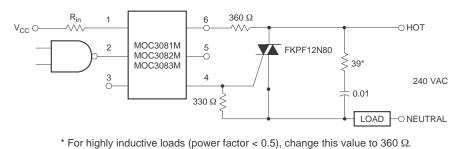


Figure 12. Hot–Line Switching Application Circuit

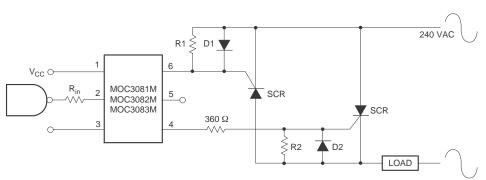


Figure 13. Inverse–Parallel SCR Driver Circuit

Suggested method of firing two, back–to–back SCR's with an ON Semiconductor triac driver. Diodes can be 1N4001; resistors, R1 and R2, are optional 330 Ω .

NOTE: This optoisolator should not be used to drive a load directly. It is intended to be a trigger device only.

Reflow Profile

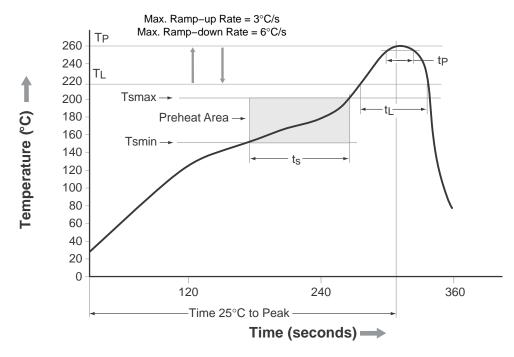


Figure 14. Reflow Profile

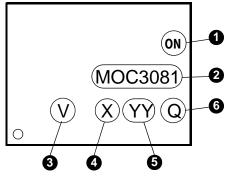
Profile Freature	Pb–Free Assembly Profile
Temperature Minimum (Tsmin)	150°C
Temperature Maximum (Tsmax)	200°C
Time (t _S) from (Tsmin to Tsmax)	60 seconds to 120 seconds
Ramp–up Rate (T _L to T _P)	3°C/second maximum
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60 seconds to 150 seconds
Peak Body Package Temperature	260°C +0°C / –5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp–down Rate (T_P to T_L)	6°C/second maximum
Time 25°C to Peak Temperature	8 minutes maximum

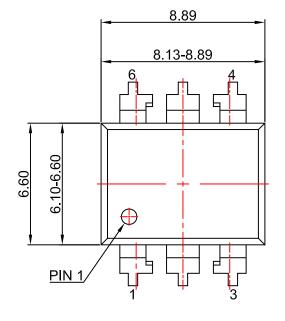
ORDERING INFORMATION

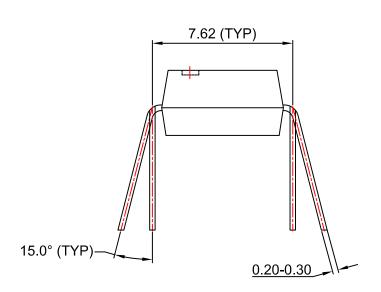
Part Number	umber Package Sh	
MOC3081M	DIP 6-Pin	50 Units / Tube
MOC3081SM	SMT 6-Pin (Lead Bend)	50 Units / Tube
MOC3081SR2M	SMT 6–Pin (Lead Bend)	1000 Units / Tape & Reel
MOC3081VM	DIP 6-Pin, DIN EN/IEC60747-5-5 Option	50 Units / Tube
MOC3081SVM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	50 Units / Tube
MOC3081SR2VM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	1000 Units / Tape & Reel
MOC3081TVM	DIP 6-Pin, 0.4" Lead Spacing, DIN EN/IEC60747-5-5 Option	50 Units / Tube

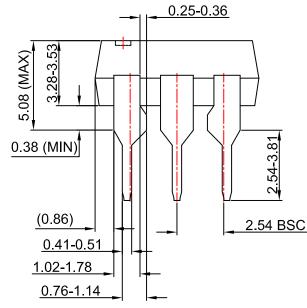
NOTE: The product orderable part number system listed in this table also applies to the MOC3011M, MOC3012M, MOC3020M, MOC3021M, MOC3022M, and MOC3083M product families.

MARKING INFORMATION




Figure 15. Top Mark


	Top Mark Definitions		
1	ON Semiconductor Logo		
2	Device Number		
3	DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option)		
4	One-Digit Year Code, e.g., '5'		
5	Two–Digit Work Week, Ranging from '01' to '53'		
6	Assembly Package Code		

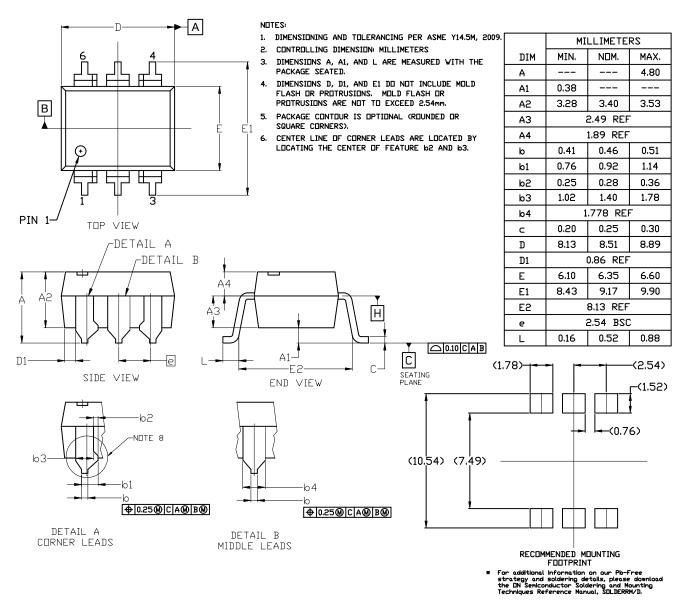


PDIP6 8.51x6.35, 2.54P CASE 646BX ISSUE O

DATE 31 JUL 2016

NOTES:

- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

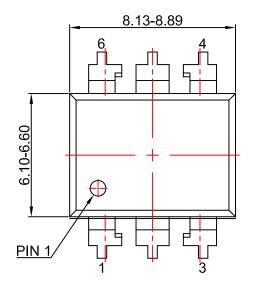

DOCUMENT NUMBER:	98AON13449G	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PDIP6 8.51X6.35, 2.54P		PAGE 1 OF 1	
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or icidental damages. ON Semiconductor does not convey any license under	or guarantee regarding circuit, and specifically	

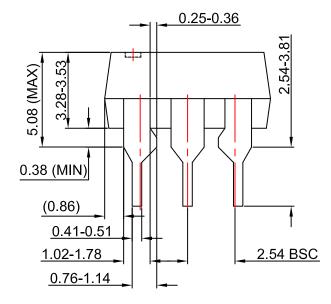
rights of others.

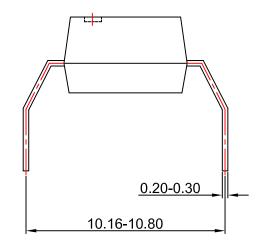
ON

PDIP6 8.51x6.35, 2.54P CASE 646BY ISSUE A

DATE 15 JUL 2019




DOCUMENT NUMBER:	98AON13450G	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	PDIP6 8.51x6.35, 2.54P	PAGE 1 OF			
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or icidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically		



PDIP6 8.51x6.35, 2.54P CASE 646BZ ISSUE O

DATE 31 JUL 2016

NOTES:

- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

DOCUMENT NUMBER:	98AON13451G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	PDIP6 8.51X6.35, 2.54P		PAGE 1 OF 1
ON Semiconductor and unarrest of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.			