

DESCRIPTION

The MP1921B is a high-frequency 100V halfbridge N-channel power MOSFET driver. Its lowside and high-side driver channels are independently controlled and matched, with a time delay of less than 5ns. Under-voltage lockout on both high-side and low-side supplies force their outputs low in case of insufficient supply. The integrated bootstrap diode reduces external component count.

FEATURES

- Drives N-Channel MOSFET Half-Bridge
- 120V V_{BST} Voltage Range
- On-Chip Bootstrap Diode
- Typical 16ns Propagation Delay Time
- Less Than 5ns Gate Drive Matching
- Drives 1nf Load with 12ns/9ns Rise/Fall Times with 12V VDD
- TTL Compatible Input
- Less Than 150µA Quiescent Current
- UVLO for Both High Side and Low Side
- In QFN10 (3mmx3mm) Package

APPLICATIONS

- Telecom Half-Bridge Power Supplies
- Avionics DC/DC Converters
- Two-Switch Forward Converters
- Active-Clamp Forward Converters
- DC Motor Drivers

All MPS parts are lead-free, halogen free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are Registered Trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

ORDERING INFORMATION

Part Number*	Package	Top Marking
MP1921GQ-B	QFN10 (3mmx3mm)	See Below

* For Tape & Reel, add suffix –Z (e.g. MP1921GQ-B–Z).

TOP MARKING

BLDY

LLL

BLD: Product code of MP1921GQ-B Y: Year code LLL: Lot number

PACKAGE REFERENCE

MP1921B - 100V, 2.5A, HIGH-FREQUENCY HALF-BRIDGE GATE DRIVER

PIN FUNCTIONS

QFN10 (3x3mm)	Name	Description
1	VDD	Supply input. VDD supplies power to all the internal circuitry. A decoupling capacitor to ground must be placed close to VDD to ensure stable and clean supply.
2,6	NC	No connection.
3	BST	Bootstrap. This is the positive power supply for the internal floating high-side MOSFET driver. Connect a bypass capacitor between BST and SW.
4	DRVH	Floating driver output.
5	SW	Switching node.
7	INH	Control signal input for the floating driver.
8	INL	Control signal input for the low-side driver.
9	VSS, Exposed Pad	Chip ground. Connect exposed pad to VSS for proper thermal operation.
10	DRVL	Low-side driver output.

ABSOLUTE MAXIMUM RATINGS (1)

Supply voltage (V _{DD})	0.3V to +20V
SW voltage (V _{SW})	5.0V to +105V
BST voltage (V _{BST})	0.3V to +120V
BST to SW	0.3V to +18V
DRVH to SW0.3V	/ (-5V for <100ns) to
	(BST-SW) + 0.3V
DRVL to VSS0	0.3V to (VDD + 0.3V)
All other pins	-0.3V to (V _{DD} + 0.3V)
Continuous power dissipation	on (T _A =25°C) ⁽²⁾
QFN10 (3mmx3mm)	2.5W
Junction temperature	150°C
Lead temperature	
Storage temperature	65°C to +150°C

Recommended Operating Conditions ⁽³⁾

Supply voltage (V _{DD})		9.0V to 18V
SW voltage (V _{SW})	1	.0V to +100V
SW slew rate		<50V/ns
Operating junction temp (T _J).	40	°C to +125°C
Thermal Resistance ⁽⁴⁾	θ JA	θ _{JC}
QFN10 (3mmx3mm)	50	12 °C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J(MAX), the junction-to-ambient thermal resistance θ_{JA}, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D(MAX) = (T_J(MAX) T_A) / θ_{JA}. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- 3) The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS

V_{DD} = V_{BST} - V_{SW} = 12V, V_{SS} = V_{SW} = 0V, no load at DRVH and DRVL, T_A = 25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units		
Supply Currents	Supply Currents							
VDD quiescent current	IDDQ	INL = INH = 0		100	150	μA		
VDD operating current	Iddo	f _{sw} = 500kHz		2.8	3.5	mA		
Floating driver quiescent current	I _{BSTQ}	INL = INH = 0		60	90	μA		
Floating driver operating current	I _{BSTO}	f _{sw} = 500kHz		2.1	3	mA		
Leakage current	Ilk	BST = SW = 100V		0.05	1	μA		
Inputs								
INL/INH high				2	2.4	V		
INL/INH low			1	1.4		V		
INL/INH internal pull-down	R _{IN}			185		kΩ		
Under-voltage Protection		[0.4	0.5			
VDD rising threshold			1.1	8.1	8.5	V		
	VDDH		0.7	0.5	7.5	V		
(BST-SW) rising threshold	VBSTR		6.7	7.1	7.5	V		
(BST-SVV) hysteresis	VBSTH			0.55		V		
Bootstrap Diode	N/	[0.5				
Bootstrap diode VF @ 100µA	VF1			0.5		V		
Bootstrap diode VF @ 100mA	VF2			0.9		V		
Bootstrap diode dynamic R	RD	@ 100mA		2.5		Ω		
Low-Side Gate Driver								
Low-level output voltage	Voll	l _o = 100mA		0.15	0.22	V		
High-level output voltage to rail	Vohl	I _o = -100mA		0.45	0.6	V		
Peak pull-up current	IOHL	$V_{DRVL} = 0V, V_{DD} = 12V$		1.5		A		
		$V_{DRVL} = 0V, V_{DD} = 16V$		2.5		A		
Peak pull-down current	ЮЦ	$V_{DRVL} = V_{DD} = 12V$		2.5		A		
	IOLL	$V_{DRVL} = V_{DD} = 16V$		3.5		A		
Floating Gate Driver	Floating Gate Driver							
Low-level output voltage	V _{OLH}	I _o = 100mA		0.15	0.22	V		
High-level output voltage to rail	V _{онн}	I _o = -100mA		0.45	0.6	V		
Peak pull-up current	Іонн	$V_{DRVH} = 0V, V_{DD} = 12V$		1.5		A		
		$V_{DRVH} = 0V, V_{DD} = 16V$		2.5		Α		
Peak pull-down current		$V_{DRVH} = V_{DD} = 12V$		2.5		Α		
	IOLH	$V_{DRVH} = V_{DD} = 16V$		3.5		Α		

ELECTRICAL CHARACTERISTICS (continued)

 V_{DD} = V_{BST} - V_{SW} = 12V, V_{SS} = V_{SW} = 0V, no load at DRVH and DRVL, T_A = 25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Switching Spec. – Low Side Gate Driver						
Turn-off propagation delay INL falling to DRVL falling	TDLFF			16		ns
Turn-on propagation delay INL rising to DRVL rising	T _{DLRR}			16		
DRVL rise time		C∟= 1nF		12		ns
DRVL fall time		C∟= 1nF		9		ns
Switching Spec. – Floating Gate Driver						
Turn-off propagation delay INL falling to DRVH falling	TDHFF			16		ns
Turn-on propagation delay INL rising to DRVH rising	TDHRR			16		ns
DRVH rise time		C∟= 1nF		12		ns
DRVH fall time		C _L = 1nF		9		ns
Switching Spec. – Matching						
Floating driver turn-off to low side drive turn-on	T _{MON}			1	5	ns
Low side driver turn-off to floating driver turn-on	T _{MOFF}			1	5	ns
Minimum input pulse width that changes the output	T _{PW}				50 (5)	ns
Bootstrap diode turn-on or turn-off time	T _{BS}			10 (5)		ns

Note:

5) Guaranteed by design.

TYPICAL PERFORMANCE CHARACTERISTICS

 V_{DD} = 12V, V_{SS} = V_{SW} = 0V, T_A = 25°C, unless otherwise noted.

50 TEMPERATURE (°C)

100

150

0

-50

0

Low Level Output Voltage vs. Temperature

Undervoltage Lockout Threshold vs. Temperature

Undervoltage Lockout Hysteresis vs. Temperature

V_{BS}-

15

17.5 20

MP1921B Rev 1.0 4/23/2019

www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2019 MPS. All Rights Reserved.

7

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 V_{DD} = 12V, V_{SS} = V_{SW} = 0V, T_A = 25°C, unless otherwise noted.

Turn-On Propagation Delay

16.0ns

INH

INL

DRVL

DRVH

10V/div.

10V/div.

10V/div

Gate Drive Matching T_{MOFF}

Drive Rise Time (1nF Load)

Turn-Off Propagation Delay

10ns/div.

Gate Drive Matching T_{MON}

Drive Fall Time (1nF Load)

MP1921B Rev 1.0 4/23/2019 www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2019 MPS. All Rights Reserved.

BLOCK DIAGRAM

Figure 2: Function Block Diagram

APPLICATION

The INH and INL input signals can be controlled independently. If both INH and INL are controlling the HS-FET and LS-FET of the same bridge, then users must avoid shoot-through by setting

a sufficient dead time between INH and INL low, and vice versa (see Figure 3). Dead time is the time interval between INH low and INL low.

Figure 3: Short-Through Timing Diagram

REFERENCE DESIGN CIRCUITS

Half-Bridge Converter

In half-bridge converter topology, the MOSFETs are driven alternately with dead time. Therefore, INH and INL are driven with alternating signals

from the PWM controller (see Figure 4). Input voltage can be up to 100V in this application.

Figure 4: Half-Bridge Converter

Two-Switch Forward Converter

In two-switch forward converter topology, both MOSFETs are turned on and off together. The input signal (INH and INL) comes from the PWM controller, which senses the output voltage and output current if current-mode control is used (see

Figure 5). The Schottky diodes clamp the reverse swing of the power transformer, and must be rated at the input voltage. Input voltage can be up to 100V in this circuit.

Figure 5: Two-Switch Forward Converter

Active-Clamp Forward Converter

In active-clamp forward converter topology, the MOSFETs are driven alternately. The high-side MOSFET, along with capacitor C_{reset} , is used to reset the power transformer in a lossless manner.

This topology lends itself well to run at duty cycles exceeding 50%. For these reasons, the input voltage may not be able to run at 100V for this application.

Figure 6: Active-Clamp Forward Converter