
MP23DB01HP

MEMS audio sensor: digital microphone with multiple performance modes

Features

- Omnidirectional digital microphone
- Very low distortion / very high AOP
 - 135 dBSPL acoustic overload point
- Multiple performance modes
 (sleep, low-power, performance)
- Typ. current consumption
 - 2 µA (sleep mode)
 - 285 µA (low-power mode)
 - 800 µA (performance mode)
- Sensitivity matching
- PDM single-bit output with option for stereo configuration
- RHLGA package
 - Bottom-port design
 - SMD-compliant
 - EMI-shielded
 - ECOPACK, RoHS and "Green" compliant

Applications

- Smartphones and handsets
- Laptop and notebook computers
- Wearable devices
- Devices enabling always-on feature
- Digital still and video cameras
- Antitheft systems

Description

The MP23DB01HP is an ultra-compact, lowpower, omnidirectional, digital MEMS microphone built with a capacitive sensing element and an IC interface with stereo operation capability.

The sensing element, capable of detecting acoustic waves, is manufactured using a specialized silicon micromachining process dedicated to producing audio sensors.

The IC interface is manufactured using a CMOS process that allows designing a dedicated circuit able to provide a digital signal externally in PDM format.

The MP23DB01HP offers multiple performance modes (power-down, low-power and performance mode) enabled by different clock frequency ranges. The device has a very high AOP in performance mode, sensitivity range of ± 1 dB and high SNR for all operative modes.

The MP23DB01HP is available in a bottom-port, SMD-compliant, EMI-shielded package and is guaranteed to operate over an extended temperature range from -40 °C to +85 °C.

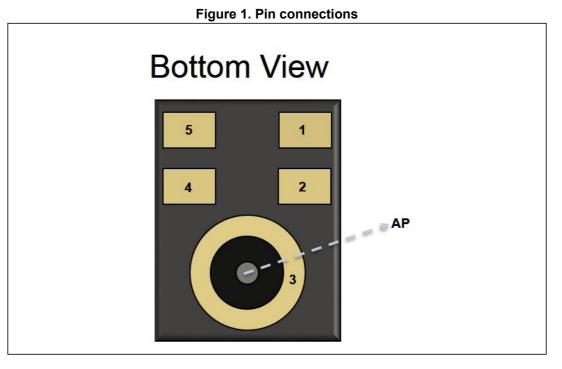
Part number	Temperature range [°C]	Package	Packing
MP23DB01HPTR	-40 to +85	RHLGA 5LD (3.5 x 2.65 x 0.98) mm	Tape and reel

Table 1. Device summary

July 2020

DocID034289 Rev 2

This is information on a product in full production.


1/15

Contents

1	Pin description
2	Acoustic and electrical specifications
	2.1 Acoustic and electrical characteristics 4
	2.2 Timing characteristics 6
	2.3 Frequency response
3	Absolute maximum ratings8
4	Functionality
	4.1 L/R channel selection
5	Application recommendations 10
6	Package information 11
7	Revision history

1 Pin description

Table 2. Pin description

Pin #	Pin name	Function	
1	DOUT	Left/right PDM data output	
2	L/R	Left/right channel selection	
3 (ground ring)	GND	0 V supply	
4	CLK	Synchronization input clock	
5	VDD	Supply voltage	

2 Acoustic and electrical specifications

2.1 Acoustic and electrical characteristics

The values listed in the table below are specified for Vdd = 1.8 V, Clock = 2.4 MHz, T = 25 °C, no load, unless otherwise noted.

Symbol	Parameter	Test condition	Min.	Тур. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		1.6	1.8	3.6	V
		Power-down mode	0		0.15	
fclk	Clock frequency range ⁽²⁾⁽³⁾	Low-power mode	0.54	0.768	1.1	MHz
		Performance mode	1.5	2.4	3.3	
ldd	Current consumption in low-power mode	Fc = 768 kHz		285		μA
ldd	Current consumption in	Fc = 2.4 MHz		800		μA
Idd	performance mode	Fc = 3.072 MHz		880		μA
lddPdn	Current consumption in power-down ⁽⁴⁾			2	5	μA
lcc	Short-circuit current		1		10	mA
V _{IOL}	Low-level logic input/output voltage	lout = 1 mA	-0.3		0.35xVdd	V
V _{IOH}	High-level logic input/output voltage	lout = 1 mA	0.65xVdd		Vdd+0.3	V
TWK	Wake-up time ⁽⁵⁾	Guaranteed by design			10	ms
Roll-off	Frequency response	-3 dB point		35		Hz
Cload	DOUT load capacitance				100	pF
Тор	Operating temperature range		-40		+85	°C

Table 3.	General	microphone	specifications
10010 01	00110101	11110100110110	opoonnoutionio

1. Typical specifications are not guaranteed.

2. Duty cycle: min = 40% max = 60%

3. In case of mode change (from low-power to performance mode or vice versa), the clock has to be continuous or has to be stopped for at least 50 $\mu s.$

4. Input clock in static mode

5. Time from the first clock edge to valid output data

The values listed in the table below are specified for Vdd = 1.8 V, Clock = 768 kHz, no load, T = 25 $^{\circ}$ C, unless otherwise noted.

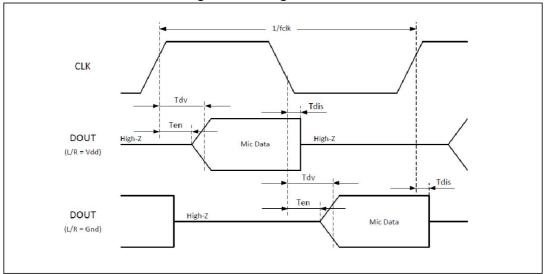
Table 4. Low-power mode						
Symbol	Parameter	Test condition	Min.	Тур. ⁽¹⁾	Max.	Unit
ldd	Current consumption			285		μA
So	Sensitivity	94 dBSPL @ 1 kHz	-25	-24	-23	dBFS
SNR	Signal-to-noise ratio	94 dBSPL @ 1 kHz A-weighted (20 Hz - 8 kHz)		64		dB(A)
THD	Total harmonic distortion	94 dBSPL @1 kHz		0.2		%
AOP	Acoustic overload point			120		dBSPL
PSR	Power supply rejection	100 mVpp sine wave @ 217 Hz		-85		dBFS

1. Typical specifications are not guaranteed.

The values listed in the table below are specified for Vdd = 1.8 V, Clock = 2.4MHz, no load, T = 25 $^{\circ}$ C, unless otherwise noted

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
ldd	Current consumption	2.4 MHz		800		μA
luu		3.072 MHz		880		μΑ
So	Sensitivity	94 dBSPL @1 kHz	-42	-41	-40	dBFS
	Signal-to-noise ratio	2.4 MHz		65		
SNR	94 dBSPL @ 1 kHz A-weighted (20 Hz - 20 kHz)	3.072 MHz		65.5		dB(A)
тип	THD Total harmonic distortion	94 dBSPL @1 kHz		0.2		%
		110 dBSPL @1 kHz		0.5		70
AOP	Acoustic overload point			135		dBSPL
PSR	Power supply rejection	100mVpp sinewave @ 217 Hz		-95		dBFS

Table 5. Performance mode


1. Typical specifications are not guaranteed.

2.2 Timing characteristics

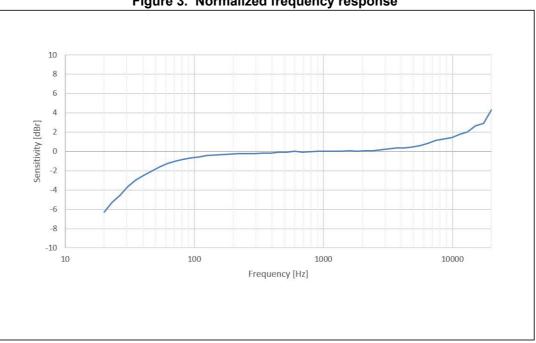

Parameter	Description	Min	Max	Unit
T _{dv}	Delay time to valid data (Cload = 100 pF)		120	ns
T _{en}	Delay time to data driven	19		ns
T _{dis}	Delay time to Hi-Z	4	17	ns

Figure 2. Timing waveforms

2.3 Frequency response

Absolute maximum ratings 3

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 4.8	V
Vin	Input voltage on any control pin ⁽¹⁾	-0.3 to Vdd +0.3	V
T _{OP}	Operating temperature range	-40 to +105	°C
T _{STG}	Storage temperature range	-40 to +125	°C
	(HBM) ANSI/ESDA/JEDEC JS001	±2000	
ESD	(MM) EIA/JESD22-A115	±200	V
	(CDM) JESD22-C101	±750	
ESD ⁽²⁾	Per IEC61000-4-2, 150 pF, 330 W direct contact to ±8000		V

1. Supply voltage on any pin should never exceed 4.8 V.

2. Bypass capacitor of 200 nF or 1 µF (better) is highly recommended for ESD main clamp integrity.

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

4 Functionality

4.1 L/R channel selection

The L/R digital pad lets the user select the DOUT signal pattern as explained in *Table 8*. The L/R pin must be connected to Vdd or GND.

L/R	CLK low	CLK high
GND	Data valid	High impedance
Vdd	High impedance	Data valid

Table 8. L/R channel selection

Note: As the L/R pin is internally connected to GND via a 200k pull-down resistor, it is not mandatory to connect the pin itself to GND for the respective channel selection.

5 Application recommendations

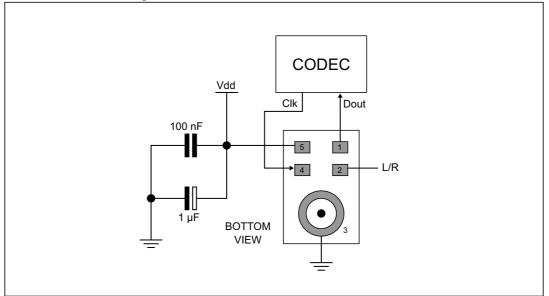
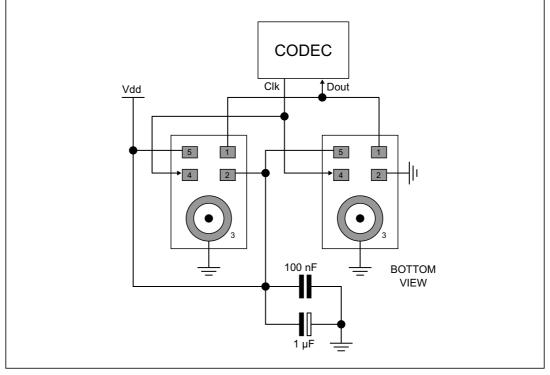



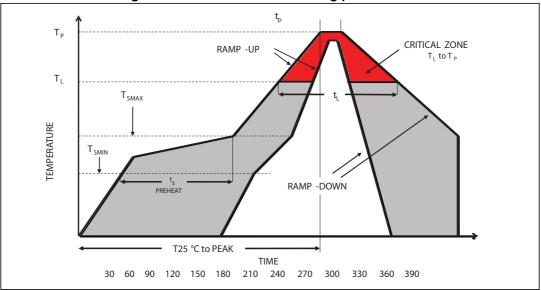
Figure 4. MP23DB01HP electrical connections

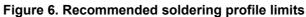
Figure 5. MP23DB01HP electrical connections for stereo configuration

Power supply decoupling capacitors (100 nF ceramic, 1 μ F ceramic) should be placed as near as possible to pin 5 of the device (common design practice).

The L/R pin must be connected to Vdd or GND (refer to Table 8).

DocID034289 Rev 2

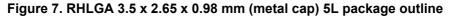

6 Package information

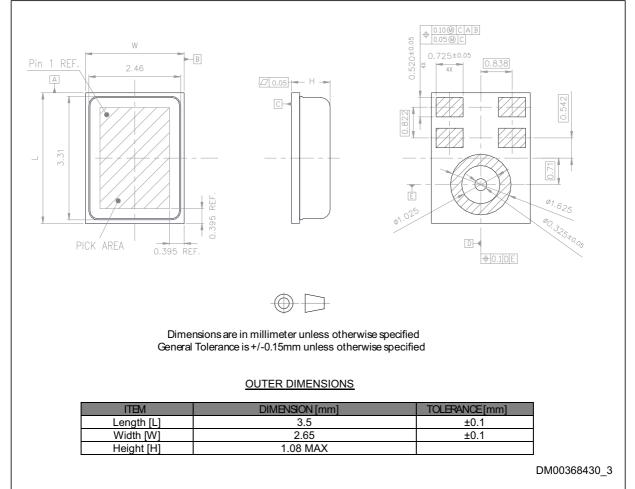

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK is an ST trademark.

Soldering information

The RHLGA (3.5 x 2.65 x 0.98) mm package is also compliant with the RoHS and "Green" standards and is qualified for soldering heat resistance according to JEDEC J-STD-020.

Landing pattern and soldering recommendations are available at www.st.com.


Table 9. Recommended soldering profile limits


Description	Parameter	Pb free
Average ramp rate	T _L to T _P	3 °C/sec max
Preheat		
Minimum temperature	T _{SMIN}	150 °C
Maximum temperature	T _{SMAX}	200 °C
Time (T _{SMIN} to T _{SMAX})	t _S	60 sec to 120 sec
Ramp-up rate	T_{SMAX} to T_{L}	
Time maintained above liquidous temperature Liquidous temperature	tL TL	60 sec to 150 sec 217 °C
Peak temperature	Τ _Ρ	260 °C max
Time within 5 °C of actual peak temperature		20 sec to 40 sec

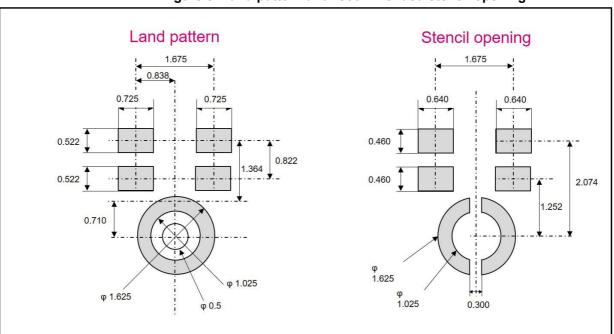

Description	Parameter	Pb free		
Ramp-down rate		6 °C/sec max		
Time 25 °C (t25 °C) to peak temperature		8 minutes max		

Table 9. Recommended soldering profile limits (continued)

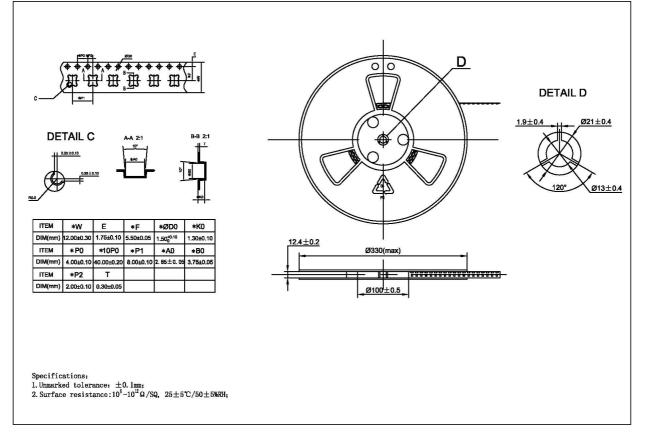


Figure 8. Land pattern and recommended stencil opening

Figure 9. Carrier tape and reel mechanical specifications

DocID034289 Rev 2

7 Revision history

Date	Revision	Changes
29-Apr-2020	1	Initial release
27-Jul-2020	2	Added footnote 3 regarding the clock to Table 3: General microphone specifications

Table 10. Document revision history

