

MP62160/MP62161

3.3V/5V, Single-Channel 2A Current-Limited Power Distribution Switch with Output Discharge

DESCRIPTION

The MP62160/MP62161 Power Distribution Switch features internal current limiting to prevent damage to host devices due to faulty load conditions. The MP62160/MP62161 operates from a 3.3V or 5V input voltage and includes an $85m\Omega$ Power MOSFET to handle up to 2A continuous load with a 2.8A typical current limit. The MP62160/MP62161 has built-in protection for both over current and increased thermal stress. For over-current protection (OCP), the device will limit the current by going into a constant current mode.

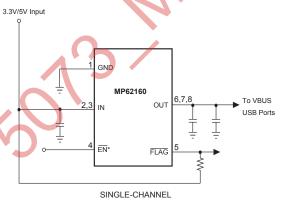
When continuous output overload condition exceeds power dissipation of the package, the thermal protection will shut the part off. The device will recover once the device temperature reduces to approx 120°C.

The MP62160/MP62161 involves a discharge function that provides a resistive discharge path for the external output capacitor when the part is disabled.

The MP62160/MP62161 is available in QFN8E MSOP8E and SOIC8 packages.

FEATURES

- 2A Continuous Current
- 2.8A accurate Current Limit
- Output Discharge Function
- 2.7V to 5.5V Supply Range
- 90uA Quiescent Current
- 85mΩ MOSFET
- Thermal-Shutdown Protection
- Under-Voltage Lockout
- 8ms FLAG Deglitch Time
- No FLAG Glitch During Power Up
- Reverse Current Blocking
- Active High & Active Low Options
- UL Recognized: E322138


APPLICATIONS

- Smartphone and PDA
- Portable GPS Device
- Notebook PC
- Set-top-box
- Telecom and Network Systems
- PC Card Hot Swap
- USB Power Distribution

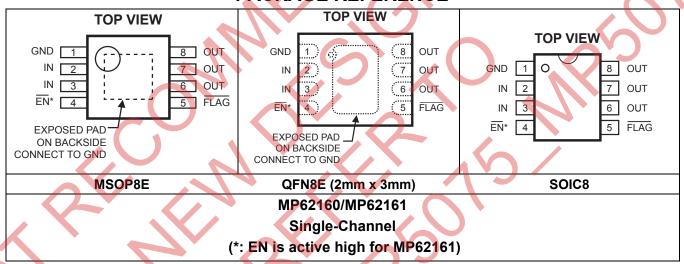
All MPS parts are lead-free, halogen free, and adhere to the RoHS directive. For MPS green status, please visit MPS website under Quality Assurance.

"MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

*: EN is active high for MP62161

UL Recognized Component



ORDERING INFORMATION

Part Number	Enable	Switch	Maximum Continuous Load Current	Typical Short- Circuit Current @ T _A =25C	Package	Top Marking	Free Air Temperature (T _A)
MP62160DS					SOIC8	62160DS	
MP62160DD	Active Low				QFN8E (2mm x 3mm)	62160DD	
MP62160DH*		Single	2A	2.8A	MSOP8E	62160DH	-40°C to +85°C
MP62161DD	Active High				QFN8E (2mm x 3mm)	62161DD	
MP62161DH	9.1				MSOP8E	62161DH	

* For Tape & Reel, add suffix –Z (e.g. MP62160DH–Z). For RoHS Compliant Packaging, add suffix –LF (e.g. MP62160DH–L)

PACKAGE REFERENCE

Δ	BSOL	UTF	MAXIMUM	RATINGS	(1)
	DOCE	\cup \sqcup			

IN	
EN, FLAG, OUT to GND Continuous Power Dissipation (T	
MSOP8E	
QFN8E (2mm x 3mm)	
SOIC8	
Junction Temperature	
Lead Temperature	
Storage Temperature68	
Operating Temperature	40°C to +85°C

Thermal Resistance (3)	$oldsymbol{ heta}_{JA}$	$oldsymbol{ heta}_{JC}$	
MSOP8E	55	12 °C/W	/
QFN8E (2mm x 3mm)	55	12 °C/W	/
SOIC8	90	42 °C/W	/

Notes

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J(MAX), the junction-to-ambient thermal resistance θ_{JA}, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D(MAX)=(T_J(MAX)-T_A)/θ_{JA}. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- 3) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS (4)

T_A=+25°C, 2.7V≤V_{IN}≤5.5V, R_{FLAG}=100kΩ, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
IN Voltage Range	V_{IN}		2.7		5.5	V
Supply Current	I _{IN_ON}	Device Active, V _{OUT} =float, V _{IN} =5.5V, I _{OUT} =0		90	120	μΑ
Shutdown Current	I _{IN_OFF}	Device Disable, V _{OUT} =float, V _{IN} =5.5V		1		μA
Off Switch Leakage		Device Disable, V _{OUT} =GND, V _{IN} =5.5V		1		μΑ
Current Limit	I _{OS}		2.1	2.8	3.5	Α
Trip Current	I _{trip}	Current Ramp (slew rate≤100A/s) on Output		3.1	4	Α
Under-voltage Lockout	$INUV_{VTH}$	V _{IN} Rising Edge	1.95		2.65	V
Under-voltage Hysteresis	INUV _{HYS}	12		250		mV
		MSOP8E		75	120	mΩ
FET On Resistance	R _{DS(on)}	$V_{IN}=5V$, $I_{OUT}=100$ mA (- QFN8E 40°C≤ $T_A \le 85$ °C) (2mm x 3mm)		75	120	mΩ
		SOIC8		85	120	mΩ
EN Input Logic High Voltage	VIH _{EN}		2		7.	V
EN Input Logic Low Voltage	VIL _{EN}				0.8	V
FLAG Output Logic Low Voltage	V _{OL}	I _{FLAG} =5mA			0.4	V
FLAG Output High Leakage Current	I _{FLAG_OFF}	V _{FLAG} =5.5V			1	μΑ
Thermal Shutdown Threshold	T			140		°C
Thermal Shutdown Hysteresis	T_{J_HYS}	76, 70		20		°C
V _{OUT} Rising Time	Tr ⁽⁵⁾	$V_{IN}=5.5V$, $C_L=1\mu F$, $R_L=5\Omega$		0.9		ms
3		$V_{IN}=2.7V$, $C_L=1\mu F$, $R_L=5\Omega$		1.7	0.5	ms
V _{OUT} Falling Time	Tf ⁽⁶⁾	$V_{IN}=5.5V$, $C_{L}=1\mu F$, $R_{L}=5\Omega$			0.5	ms
Turn On Time	Ton (7)	V_{IN} =2.7V, C_L =1 μ F, R_L =5 Ω C_L =100 μ F, R_L =5 Ω			0.5 3	ms ms
Turn Off Time	Toff ⁽⁸⁾	C _L =100μF, R _L =5Ω			10	ms
Discharge Resistance	R _{DIS}	- 100μ1, 11, -022		250	10	Ω
FLAG Deglitch Time	T _{FLAG_Deg}	Delay time for assertion or deassertion due to over-current condition	4	8	15	ms
EN Input Leakage	I _{EN}	V _{EN} =0~5.5V	-1			μA
Reverse Leakage Current	I _{REV}	V _{OUT} =5.5V, V _{IN} =GND	-	0.2		μА

NOTE:

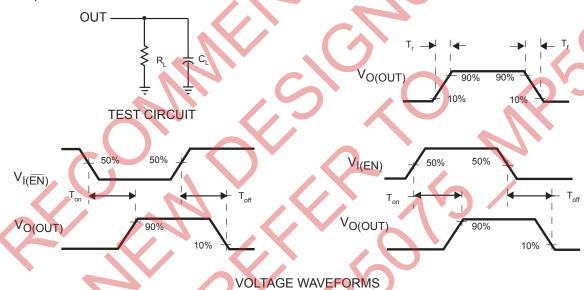
- 4) Production test at +25°C. Specifications over the temperature range are guaranteed by design and characterization.
- 5) Measured from 10% to 90%.
- 6) Measured from 90% to 10%.
- 7) Measured from (50%) EN signal to (90%) output signal.
- 8) Measured from (50%) EN signal to (10%) output signal.

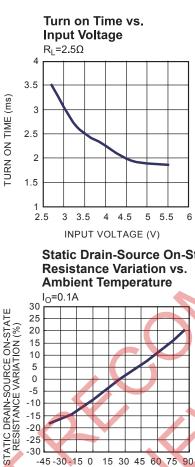
PIN FUNCTIONS

Pin # SOIC8	Pin # MSOP8E	Pin # QFN8E	Name	I/O	Description
1	1	1	GND		Ground.
2, 3	2, 3	2, 3	IN	I	Input Voltage. Accepts 2.7V to 5.5V input.
4	4	4	EN	I	Active Low: (MP62160), Active High: (MP62161)
5	5	5	FLAG	0	IN-to-OUT Over-current, active-low output flag. Open-Drain.
6, 7, 8	6, 7, 8	6, 7, 8	OUT	0	IN-to-OUT Power-Distribution Output (for all 3 output pins)

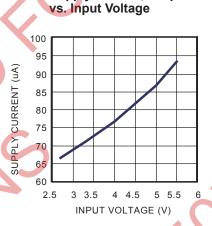
TYPICAL PERFORMANCE CHARACTERISTICS

 $T_A = +25$ °C, unless otherwise noted.



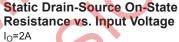

Figure 1—Test Circuit and Voltage Waveforms

© 2018 MPS. All Rights Reserved.



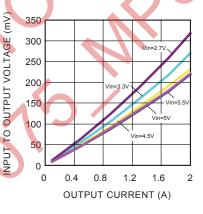
TYPICAL PERFORMANCE CHARACTERISTICS

 $V_{IN} = 5V$, $V_{EN} = 0V$ for MP62160 or 5V for MP62161, $C_L = 2.2 \mu F$, $R_{FLAG} = 100 k \Omega$, $T_A = +25 ^{\circ} C$, unless otherwise noted.



Turn off Time vs. Input Voltage $R_L=2.5\Omega$ 0.25 (ms) 0.2 TURN OFF TIME 0.15 0.1 0.05 3 3.5 4 4.5 5 5.5 INPUT VOLTAGE (V)

Static Drain-Source On-State



Threshold Trip Current vs.

Input to Output Voltage vs **Load Current**

Supply Current, Output Enabled

Current Limit Response Time

Current Limit vs. Input Voltage

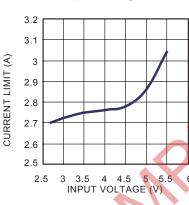
20

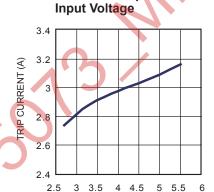
15

10

5

0

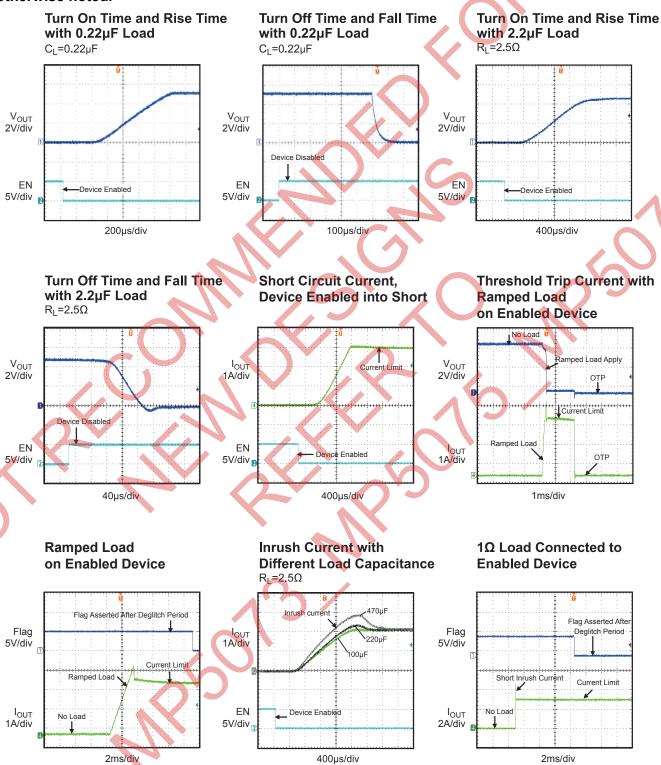

-5


-10

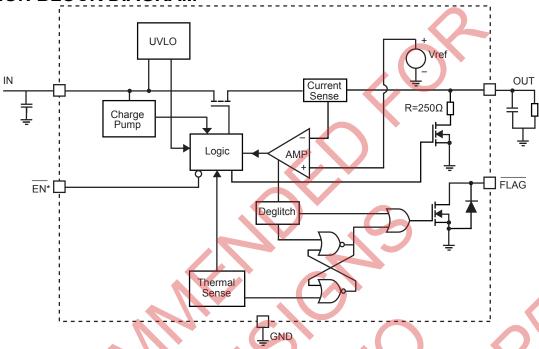
-15

-20

-25


vs. Peak Current 30 **CURRENT LIMIT RESPONSE TIME** 25 20 15 10 5 0 PEAK CURRENT (A)

INPUT VOLTAGE (V)


TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 V_{IN} =5V, V_{EN} =0V for MP62160 or 5V for MP62161, C_L =2.2 μ F, R_{FLAG} =100k Ω , T_A = +25°C, unless otherwise noted.

FUNCTION BLOCK DIAGRAM

*: EN is active high for MP62161
Figure2—Functional Block Diagram

DETAILED DESCRIPTION

Over Current

When the load exceeds trip current (minimum threshold current triggering constant-current mode) or a short is present, MP62160/MP62161 switches into to a constant-current mode (current limit value). MP62160/MP62161 will be shutdown only if the over current condition stays long enough to trigger thermal protection.

Trigger over current protection for different overload conditions occurring in applications:

- The output has been shorted or overloaded before the device is enabled or input applied. MP62160/MP62161 detects the short or overload and immediately switches into a constant-current mode.
- 2) A short or an overload occurs after the device is enabled. After the current-limit circuit has been tripped (reached the trip current threshold), the device switches into constantcurrent mode. However, high current may flow for a short period of time before the current-limit circuit can react.

3) Output current has been gradually increased beyond the recommended operating current. The load current rises until the trip current threshold is reached or until the thermal limit of the device is exceeded. The MP62160/MP62161 is capable of delivering current up to the trip current threshold without damaging the device. Once the trip threshold has been reached, the device switches into its constant-current mode.

Flag Response

The FLAG pin is an open drain configuration. This FLAG will report a fail mode after an 8ms deglitch timeout. This is used to ensure that no false fault signals are reported. This internal deglitch circuit eliminates the need for extend components. The FLAG pin is not deglitched during an over temp. or a voltage lockout.

Thermal Protection

The purpose of thermal protection is to prevent damage in the IC by allowing exceptive current to flow and heating the junction. The temperature is internally monitored until the thermal limit is reached. Once this temperature is reached, the switch will turn off and allow the chip to cool. The switch has a built-in hysteresis.

Under-voltage Lockout (UVLO)

This circuit is used to monitor the input voltage to ensure that the MP62160/MP62161 is operating correctly.

This UVLO circuit also ensures that is no operation until the input voltage reaches the minimum spec.

Enable

The logic pin disables the switch to reduce overall supply current .Once the EN pin reaches logic enable threshold, the MP62160/MP62161 is enabled.

Output Discharge

The part involves a discharge function that provides a resistive discharge path for the external output capacitor. The function will be active when the part is disabled (Input voltage is under UVLO or enable is deasserted) and it will be done in a very limited time.

APPLICATION INFORMATION

Power-Supply Considerations

Over 10µF capacitor between IN and GND is recommended. This precaution reduces power-supply transients that may cause ringing on the input and improves the immunity of the device to short-circuit transients.

In order to achieve smaller output load transient ripple, placing a high-value electrolytic capacitor on the output pin(s) is recommended when the load is heavy.

© 2018 MPS. All Rights Reserved.

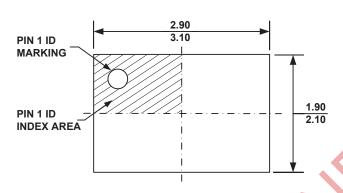
PACKAGE INFORMATION

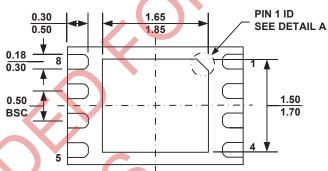
MSOP8E (EXPOSED PAD) 0.087(2.20) 0.114(2.90) 0.122(3.10) 0.099(2.50) 0.114(2.90) 0.187(4.75) 0.062(1.58) 0.199(5.05) 0.074(1.88) 0.122(3.10) PIN 1 ID (NOTE 5) **Exposed Pad** 0.010(0.25) 0.0256(0.65)BSC 0.014(0.35) **BOTTOM VIEW TOP VIEW GAUGE PLANE** 0.010(0.25) 0.030(0.75) 0.043(1.10)MAX 0.037(0.95) 0.004(0.10) SEATING PLANE 0.008(0.20) 0.002(0.05) 0.016(0.40) 0.006(0.15) 0.026(0.65) SIDE VIEW **FRONT VIEW** NOTE 0.100(2.54)1) CONTROL DIMENSION IS IN INCHES. DIMENSION IN BRACKET IS IN MILLIMETERS. 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, 0.075(1.90) 0.181(4.60) PROTRUSION OR GATE BURR. 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.

RECOMMENDED LAND PATTERN

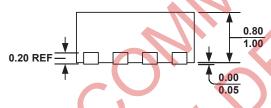
-0.0256(0.65)BSC

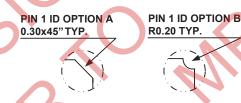
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.004" INCHES MAX.
- 5) PIN 1 IDENTIFICATION HAS HALF OR FULL CIRCLE OPTION.
- 6) DRAWING MEETS JEDEC MO-187, VARIATION AA-T.
- 7) DRAWING IS NOT TO SCALE.


0.040(1.00)

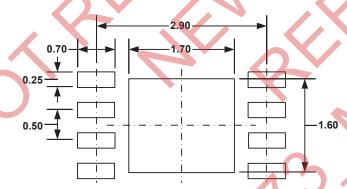

0.016(0.40)

PACKAGE INFORMATION (continued)


QFN8E (2mm x 3mm)



TOP VIEW


BOTTOM VIEW

SIDE VIEW

DETAIL A

RECOMMENDED LAND PATTERN

NOTE:

- 1) ALL DIMENSIONS ARE IN MILLIMETERS.
- 2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH.
- 3) LEAD COPLANARITY SHALL BE 0.10 MILLIMETER MAX.
- 4) DRAWING CONFORMS TO JEDEC MO-229, VARIATION VCED-2.
- 5) DRAWING IS NOT TO SCALE.