The Future of Analog IC Technology

Switch features internal current limiting to

prevent damage to host devices due to faulty load conditions. The MP6231/MP6232 analog

switch has $85m\Omega$ on-resistance and operates

from 2.7V to 5.5V input. It is available with

guaranteed current limits, making it ideal for

MP6231/MP6232 has built-in protection for both

over current and increased thermal stress. For

over current, the device will limit the current by

As the temperature increases as a result of

short circuit, then the device will shut off. The

device will recover once the device temperature

The MP6231/MP6232 is available in 8-pin

MSOP, SOIC package with exposed pad.

Power

applications.

Distribution

DESCRIPTION

The

load

MP6231/MP6232

switching

reduces to approx 120°C.

changing to a constant current mode.

MP6231/MP6232

3.3V/5V, Dual-Channel 500mA

Current-Limited Power Distribution Switches

FEATURES

- 500mA Continuous Current
- **Accurate Current Limit**
- 2.7V to 5.5V Supply Range
- 140µA Quiescent Current
- 85mΩ MOSFET
- Thermal-Shutdown Protection
- **Under-Voltage Lockout**
- 8ms FLAG Deglitch Time
- No FLAG Glitch During Power Up
- Reverse Current Blocking
- Active High & Active Low Options
- UL File # E322138


APPLICATIONS

- Smartphone and PDA
- Portable GPS Device
- Notebook PC
- Set-top-box
- Telecom and Network Systems
- PC Card Hot Swap
- **USB** Power Distribution

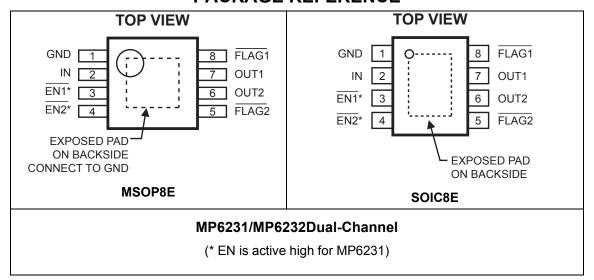
All MPS parts are lead-free, halogen free, and adhere to the RoHS directive. For MPS green status, please visit MPS website under Quality

"MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

DUAL-CHANNEL

1/20/2020



ORDERING INFORMATION

Part Number	Enable	Switch	Maximum Continuous Load Current	Typical Short- Circuit Current @ T _A =25C	Package	Top Marking	Free Air Temperature (T _A)
MP6231DH*	Active High	Dual	0.5A	750mA	MSOP8E	6231D	-40°C to +85°C
MP6232DN	Active Low				SOIC8E	MP6232DN	

* For Tape & Reel, add suffix –Z (e.g. MP6231DH–Z). For RoHS compliant packaging, add suffix –LF (e.g. MP6231DH–LF–Z)

PACKAGE REFERENCE

ABSOLUTE MAXIMUM RATINGS (1)

0.3V to +6.0V
0.3V to +6.0V
$(T_A = +25^{\circ}C)^{(2)}$
2.5W
2.27W
1.4W
150°C
260°C
-65°C to +150°C
-40°C to +125°C

Thermal Resistance (3)	$oldsymbol{ heta}_{JA}$	$oldsymbol{ heta}_{JC}$
SOIC8E	50	10 °C/W
MSOP8E	55	12 °C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J (MAX), the junction-to-ambient thermal resistance θ_{JA}, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX)-T_A)/θ_{JA}. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- 3) Measured on JESD51-7, 4-layer PCB.

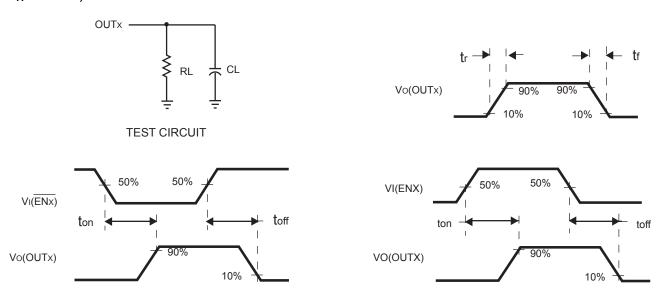
ELECTRICAL CHARACTERISTICS (4)

V_{IN}=5V, T_A=+25°C, unless otherwise noted.

Parameter	Condition	Min	Тур	Max	Units
IN Voltage Range		2.7		5.5	V
Supply Current	One Channel Enabled, I _{OUT} =0, One Switch ON		90	120	μA
Supply Current	Both Channels Enabled, I _{OUT} =0, Both Switches ON		140	160	μA
Shutdown Current	Device Disable, V _{OUT} =float, V _{IN} =5.5V		1		μΑ
Off Switch Leakage	Device Disable, V _{IN} =5.5V		1		μΑ
Current Limit		550		1100	mA
Trip Current	Current Ramp (slew rate≤100A/s) on Output		1.2	1.6	Α
Under-voltage Lockout	Rising Edge	1.95		2.65	V
Under-voltage Hysteresis			250		mV
FET On Resistance	I _{OUT} =100mA , and -40°C <t<sub>A<85°C</t<sub>		85	130	mΩ
EN Input Logic High Voltage		2			V
EN Input Logic Low Voltage				0.8	V
FLAG Output Logic Low Voltage	I _{SINK} =5mA			0.4	V
FLAG Output High Leakage Current	V _{IN} =V _{FLAG} =5.5V			1	μA
Thermal Shutdown			140		°C
Thermal Shutdown Hysteresis			20		°C
V _{OUT} Rising Time, Tr	V_{IN} =5.5 V , C_L =1 μ F, R_L =11 Ω		0.9		ms
Took racing rane, re	V_{IN} =2.7V, C_L =1 μ F, R_L =11 Ω		1.7		ms
V _{OUT} Falling Time, Tf	V _{IN} =5.5V, C _L =1μF, R _L =11Ω			0.5	ms
Turn On Time, Ton	$V_{IN}=2.7V, C_{L}=1\mu F, R_{L}=11\Omega$			0.5	ms
,	C _L =100μF, R _L =11Ω			3	ms
Turn Off Time, Toff	C _L =100μF, R _L =11Ω			10	ms
FLAG Deglitch Time		4	8	15	ms
ENx Input Leakage			1		μA
Reverse Leakage Current	OUTX=5.5V, IN=GND		0.2		μA

Notes

⁴⁾ Production test at +25°C. Specifications over the temperature range are guaranteed by design and characterization.


PIN FUNCTIONS

MP6231/MP6232

SOIC8E MSOP8E	Name	Description
1	GND	Ground.
2	IN	Input Voltage. Accepts 2.7V to 5.5V input.
3	EN1	Active Low: (MP6232), Active High: (MP6231)
4	EN2	Active Low: (MP6232), Active High: (MP6231)
5	FLAG2	IN-to-OUT2 Over-current, active-low output flag. Open-Drain.
6	OUT2	IN-to-OUT2 Power-Distribution Switch Output.
7	OUT1	IN-to-OUT1 Power-Distribution Switch Output
8	FLAG1	IN-to-OUT1 Over-current, active-low output flag. Open-Drain.

TYPICAL PERFORMANCE CHARACTERISTICS

 $T_A = +25$ °C, unless otherwise noted.

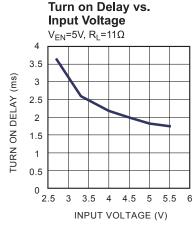
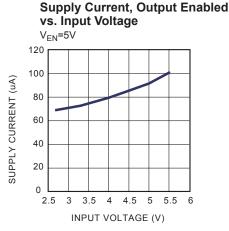
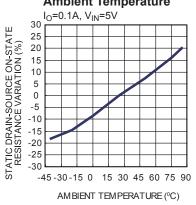
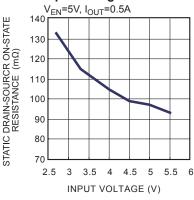

VOLTAGE WAVEFORMS

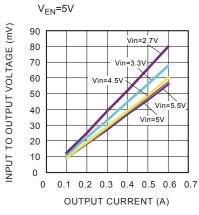
Figure 1—Test Circuit and Voltage Waveforms

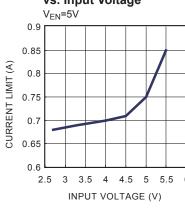


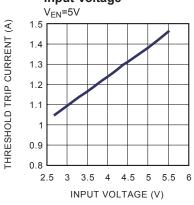
TYPICAL PERFORMANCE CHARACTERISTICS

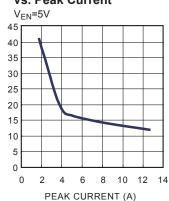

 V_{IN} =5.5V, C_L = 1 μ F, T_A = +25°C, unless otherwise noted.


Turn off Delay vs. Input Voltage V_{EN} =5V, R_L =11 Ω 1 2 (ms) 1 TURN OFF DELAY 0.8 0.6 0.4 0.2 0 2.5 3 3.5 4 4.5 5 5.5 INPUT VOLTAGE (V)

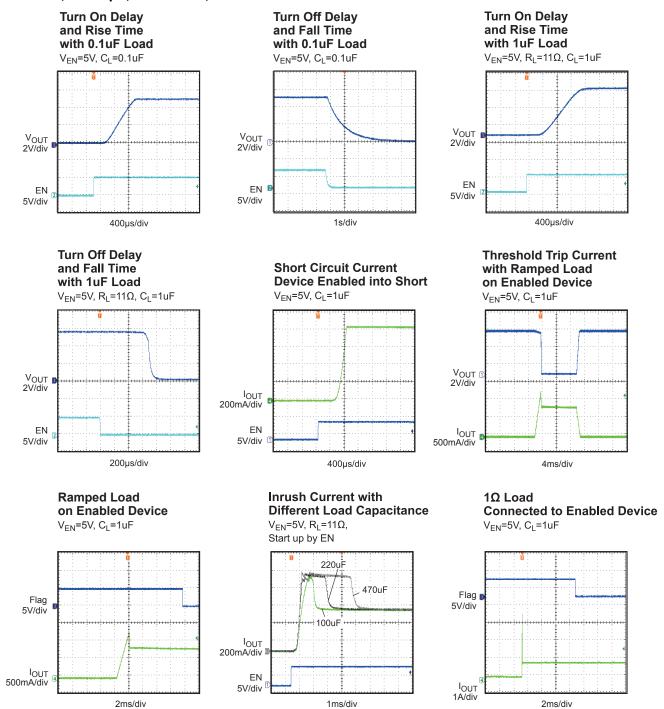

Static Drain-Source On-State Resistance Variation vs. **Ambient Temperature** I_O=0.1A, V_{IN}=5V 30




Input to Output Voltage vs. **Load Current**


Current Limit vs. Input Voltage

Current Limit Response Time vs. Peak Current


RESPONSE TIME (us)

CURRENT LIMIT

TYPICAL PERFORMANCE CHARACTERISTICS

 V_{IN} =5.5V, C_L = 1 μ F, T_A = +25 $^{\circ}$ C, unless otherwise noted.

FUNCTION BLOCK DIAGRAM

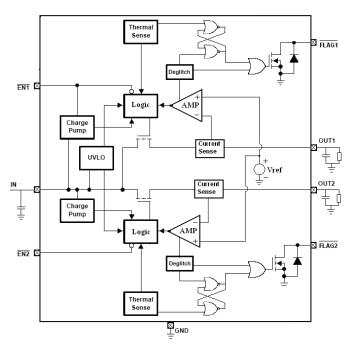


Figure 2—Functional Block Diagram

DETAILED DESCRIPTION

Over Current

When the load exceeds trip current (minimum threshold current triggering constant-current mode) or a short is present, MP6231/MP6232 switches into to a constant-current mode (current limit value). MP6231/MP6232 will be shutdown only if the overcurrent condition stays long enough to trigger thermal protection.

Trigger overcurrent protection for different overload conditions occurring in applications:

- The output has been shorted or overloaded before the device is enabled or input applied. MP6231/MP6232 detects the short or overload and immediately switches into a constant-current mode.
- 2) A short or an overload occurs after the device is enabled. After the current-limit circuit has been tripped (reached the trip current threshold), the device switches into constantcurrent mode. However, high current may flow for a short period of time before the current-limit circuit can react.

3) Output current has been gradually increased beyond the recommended operating current. The load current rises until the trip current threshold is reached or until the thermal limit of the device is exceeded. The MP6231/MP6232 is capable of delivering current up to the trip current threshold without damaging the device. Once the trip threshold has been reached, the device switches into its constant-current mode.

Flag Response

The FLAG pin is an open drain configuration. This FAULT will report a fail mode after an 8ms deglitch timeout. This is used to ensure that no false fault signals are reported. This internal deglitch circuit eliminates the need for extend components. The FLAG pin is not deglitched during an over temp. or a voltage lockout.

© 2020 MPS. All Rights Reserved.

Thermal Protection

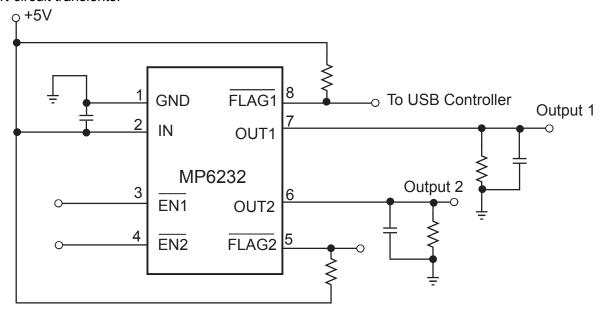
The purpose of thermal protection is to prevent damage in the IC by allowing exceptive current to flow and heating the junction. The die temp. is internally monitored until the thermal limit is reached. Once this temp. is reached, the switch will turn off and allow the chip to cool. The switch has a built-in hysteresis.

Under-voltage Lockout (UVLO)

This circuit is used to monitor the input voltage to ensure that the MP6231/MP6232 is operating correctly. This UVLO circuit also ensures that there is no operation until the input voltage reaches the minimum spec.

Enable

The logic pin disables the chip to reduce the supply current. The device will operate once the enable signal reaches the appropriate level. The input is compatible with both COMS and TTL.



APPLICATION INFORMATION

Power-Supply Considerations

Over 10µF capacitor between IN and GND is recommended. This precaution reduces power-supply transients that may cause ringing on the input and improves the immunity of the device to short-circuit transients.

In order to achieve smaller output load transient, placing a high-value electrolytic capacitor on the output pin(s) is recommended when the output load is heavy.

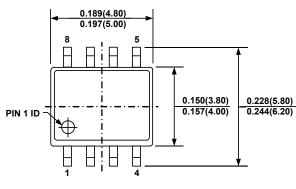
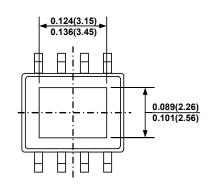
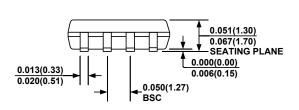
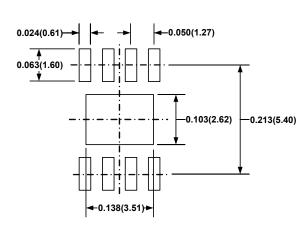

DUAL-CHANNEL

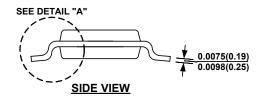
Figure 3—Application Circuit



PACKAGE INFORMATION


SOIC8E


TOP VIEW


BOTTOM VIEW

FRONT VIEW

RECOMMENDED LAND PATTERN

DETAIL "A"

NOTE:

- 1) CONTROL DIMENSION IS IN INCHES. DIMENSION IN BRACKET IS IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.004" INCHES MAX.
- 5) DRAWING CONFORMS TO JEDEC MS-012, VARIATION BA.
- 6) DRAWING IS NOT TO SCALE.