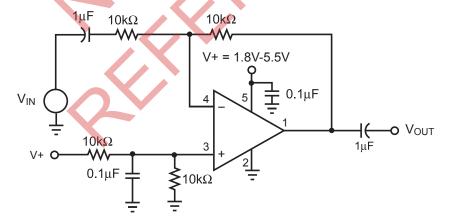


Ultra Low Power 1.8V, 400KHz Op Amp With Industry Standard Pin-Out

DESCRIPTION

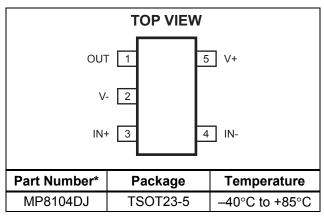
The MP8104 is a rail-to-rail output, operational amplifier in a TSOT-23 package with Industry standard pin-out. This amplifier provides 400KHz bandwidth while consuming an incredibly low 11µA of supply current. The MP8104 can operate with a single supply voltage as low as 1.8V.

FEATURES


- Single Supply Operation: 1.8V to 5.5V
- TSOT23-5 Package
- 400KHz Gain Bandwidth
- 11µA Supply Current
- Rail-to-Rail Output
- Unity-Gain Stable
- Input Common Mode to Ground
- Drives Up to 1000pF of Capacitive Loads

APPLICATIONS

- Portable Equipment
- PDAs
- Pagers
- Cordless Phones
- Handheld GPS
- Consumer Electronics


"MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

PACKAGE REFERENCE

^{*} For Tape & Reel, add suffix –Z (eg. MP8104DJ–Z) For Lead Free, add suffix –LF (eg. MP8104DJ–LF–Z)

ABSOLUTE MAXIMUM RATINGS (1)

Supply Voltage (V+ to V-).....+6.0V Differential Input Voltage (V_{IN+} – V_{IN-})......+6.0V Input Voltage $(V_{IN+} - V_{IN-})...V_{IN+} + 0.3V, V_{IN-} - 0.3V$

Recommended Operating Conditions (2)

Supply Voltage+1.8V to +5.5V Operating Temperature-40°C to +85°C

Thermal Resistance (3) θ_{JA} θ_{JC} TSOT23-5...... 220 110.. °C/W

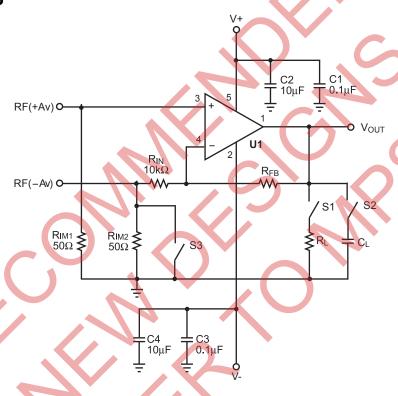
- Exceeding these ratings may damage the device.
 The device is not guaranteed to function outside of its operating conditions.
- 3) Measured on approximately 1" square of 1 oz copper.

ELECTRICAL CHARACTERISTICS

V+ = +5V, V- = 0V, V_{CM} = V+/2, R_L = 10k Ω , T_A = +25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Input Offset Voltage	Vos		– 5	1	+5	mV
Input Offset Voltage Temp Coefficient				15		μV/°C
Input Bias Current (4)	I _B			2		pА
Input Offset Current (4)	I _{os}			0.2		pА
Input Voltage Range	V_{CM}	CMRR > 60dB	0		3.8	V
Common-Mode Rejection Ratio	CMRR	0 < V _{CM} < 3.5V		82		dB
Power Supply Rejection Ratio	PSRR	Supply Voltage change of 1.0V		80		dB
Large Signal Voltage Gain	A _{VOL}	R_L = 100kΩ, V_{OUT} = 5.0 Peak to Peak	60	88		dB
Maximum Output Voltage Swing	V _{OUT}	$R_L = 10k\Omega$		(V+) – 23mV		V
Minimum Output Voltage Swing	V _{OUT}	$R_L = 10k\Omega$		(V–) + 19mV		V
Gain-Bandwidth Product (4)	GBW	$R_L = 200k\Omega, C_L = 2pF,$ $V_{OUT} = 0$		400		KHz
–3dB Bandwidth ⁽⁴⁾	BW	$A_V = 1$, $C_L = 2pF$, $R_L = 1M\Omega$		1		MHz
Slew Rate ⁽⁴⁾		$A_V = 1$, $C_L = 2pF$, $R_L = 1M\Omega$		0.2		V/µs
Short Circuit Current	I _{SC}	Source		20		mA
Short Gircuit Guirent		Sink		20		mA
Supply Current		No Load		11	20	μA

Note:


4) Guaranteed by design.

PIN FUNCTIONS

Pin#	Name	Description
1	OUT	Output.
2	V-	Ground or Supply Return Pin.
3	IN+	Non-Inverting Input.
4	IN-	Inverting Input.
5	V+	Supply Voltage.

TEST CIRCUITS

Notes: Close S3 for positive gain. Input signal to RF(+Av) connector.

The gain Av = $1 + R_{FB}/R_{IN}$.

For unity gain, remove R_{IN} and short R_{FB}.

Open S3 for negative gain. Input signal to RF(-Av) connector.

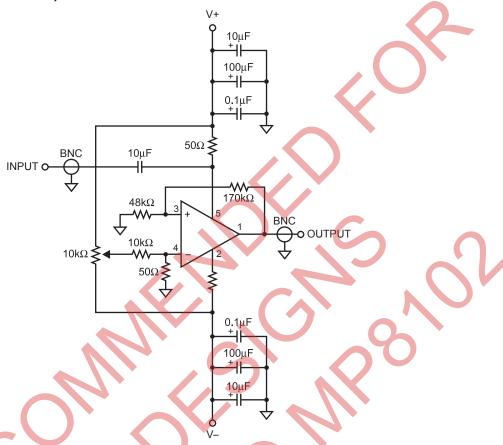
The gain $Av = -R_{FB}/R_{IN}$.

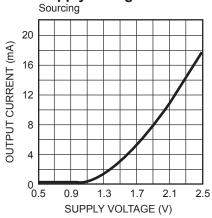
\$1 and \$2 are switches for possible resistor and capacitor load connections.

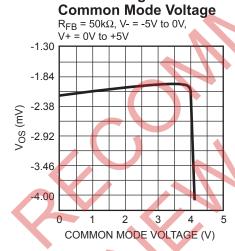
Figure 1—AC Test Circuit

3

TEST CIRCUITS (continued)

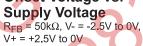


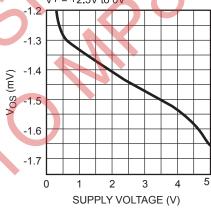

Figure 2—Positive Power Supply Rejection Ratio Measurement


TYPICAL PERFORMANCE CHARACTERISTICS

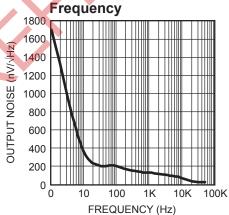
 $T_A = +25$ °C, unless otherwise noted.

Short Circuit Current vs Supply Voltage

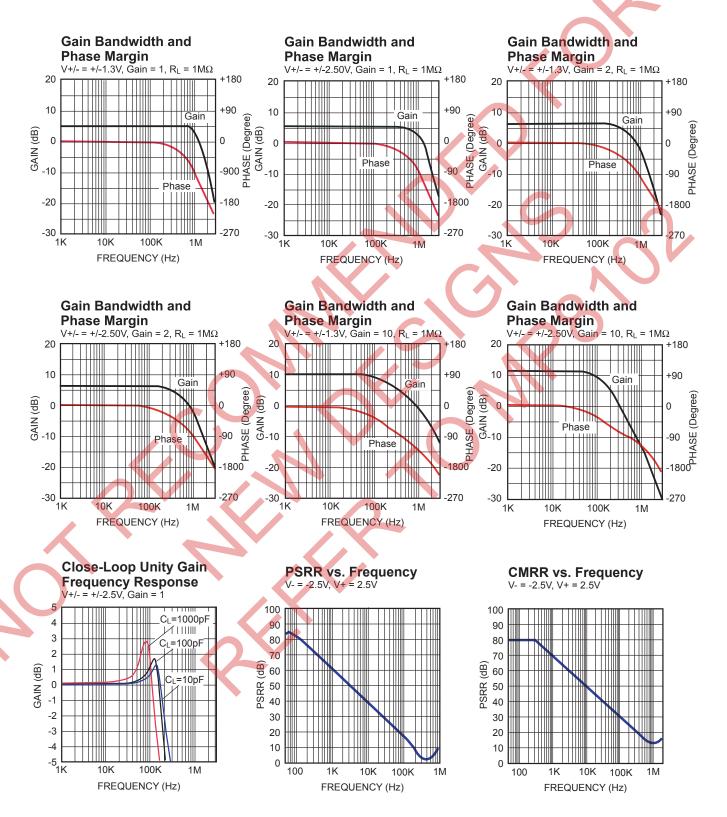

Offset Voltage vs.



Short Circuit Current vs Supply Voltage



Offset Voltage vs.


Output Noise vs.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

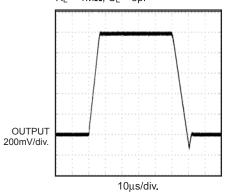
 T_A = +25°C, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 $T_A = +25$ °C, unless otherwise noted.

10μs/div.

10μs/div.

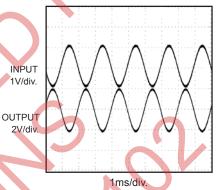


TYPICAL PERFORMANCE CHARACTERISTICS (continued)

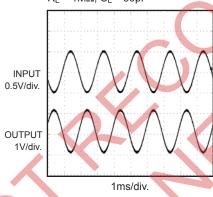
 $T_A = +25$ °C, unless otherwise noted.


Large Signal Pulse Response

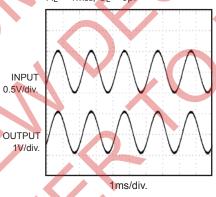
 $A_V = 1$, V+ = 2.5V, V- = -2.5V $R_L = 1M\Omega$, $C_L = 8pF$


Large Signal Pulse Response

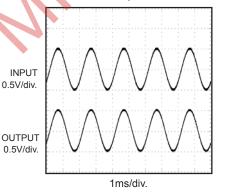
 $A_V = 1$, V+ = 1.3V, V- = -1.3V $R_L = 1M\Omega$, $C_L = 8pF$


Rail to Rail Output Operation

 A_V = -2, V+ = 2.5V, V- = -2.5V R_L = 1M Ω , C_L = 50pF


Rail to Rail Output Operation

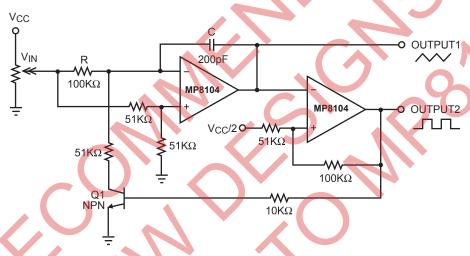
 $A_V = -2$, V+ = 1.3V, V- = -1.3V $R_L = 1M\Omega$, $C_L = 50pF$


Rail to Rail Output Operation

 $A_V = 2$, V+ = 2.5V, V- = -2.5V $R_L = 1M\Omega$, $C_L = 8pF$

Rail to Rail Output Operation

 $A_V = 2$, V+ = 1.3V, V- = -1.3V $R_L = 1M\Omega$, $C_L = 8pF$


APPLICATION INFORMATION

Power Supply Bypassing

Regular supply bypassing techniques are recommended. A 10µF capacitor in parallel with a 0.1µF capacitor on both the positive and negative supplies is ideal. For the best performance, all bypassing capacitors should

be located as close to the op amp as possible and all capacitors should be low ESL (Equivalent Series Inductance) and low ESR (Equivalent Series Resistance). Surface mount ceramic capacitors are ideal.

TYPICAL APPLICATION CIRCUIT

- 1) The control voltage V_{IN} is wide, $0 < V_{IN} < V_{CC}$ 1V 2) The switch frequency can be changed by adjusting R and C.

Figure 3—Voltage Controlled Frequency Circuit