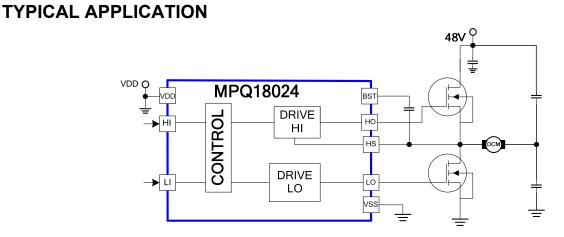


MPQ18024 100V, 4A, High-Frequency, Half-Bridge Gate Driver AEC-Q100 Qualified

DESCRIPTION

The MPQ18024 is a high-frequency, 100V, halfbridge, N-channel power MOSFET driver. Its low-side and high-side driver channels are controlled independently and matched with less than 5ns of time delay. Under-voltage lockout (UVLO) on the high-side and low-side supplies force their outputs low in the case of an insufficient supply. The integrated bootstrap diode reduces the external component count.


FEATURES

- Guaranteed Industrial / Automotive
 Temperature Range Limits
- Drives an N-Channel MOSFET Half-Bridge
- 100V V_{BST} Voltage Range
- On-Chip Bootstrap Diode
- Typical Propagation Delay of 20ns
- Gate Drive Matching of Less than 5ns
- Drives a 2.2nF Load with 15ns of Rise Time and 12ns of Fall Time at 12V VDD
- TTL-Compatible Input
- Quiescent Current of Less than 160µA
- UVLO for both High-Side and Low-Side
- Available in a SOIC-8E Package
- Available in AEC-Q100 Qualified Grade 1

APPLICATIONS

- Car DC/DC Power Systems
- Half-Bridge Motor Drivers

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

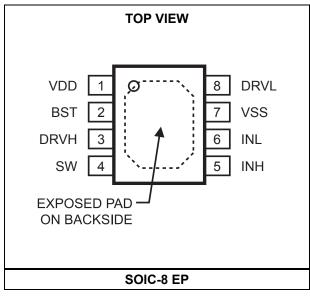
1

ORDERING INFORMATION

Part Number*	Package	Top Marking
MPQ18024HN-AEC1	SOIC-8 EP	See Below

* For Tape & Reel, add suffix -Z (e.g. MPQ18024HN-AEC1-Z).

TOP MARKING


MP18024

LLLLLLLL

MPSYWW

MP18024: Part number LLLLLLL: Lot number MPS: MPS prefix Y: Year code WW: Week code

PACKAGE REFERENCE

PIN FUNCTIONS

Pin #	Name	Description			
1	VDD	Supply input. VDD supplies power to all of the internal circuitries. Place a decoupling capacitor to ground close to VDD to ensure a stable and clean supply.			
2	BST	Bootstrap. BST is the positive power supply for the internal floating high-side MOSFET driver. Connect a bypass capacitor between BST and SW.			
3	DRVH	Floating driver output.			
4	SW	Switching node.			
5	INH	Control signal input for the floating driver.			
6	INL	Control signal input for the low side driver.			
7	VSS	Ching provide Connect the support and to VCC for proper thermal encryption			
Exposed Pad		Chip ground. Connect the exposed pad to VSS for proper thermal operation.			
8	DRVL	Low-side driver output.			

ABSOLUTE MAXIMUM RATINGS (1)

Supply voltage (V _{DD})	-0.3\/ to 18\/
SW voltage (V _{SW})	
BST voltage (V _{BST})	
BST to SW	0.3V to 18V
DRVH to SW0.3V to	o (BST - SW) + 0.3V
DRVL to VSS0	0.3V to (VDD + 0.3V)
All other pins	$-0.3V$ to $(V_{DD} + 0.3V)$
CDM rating (AEC-Q100-01	
All pins	Class C6
HBM rating (AEC-Q100-002	2)
BST, DRVH	Class H1C
Other pins	Class H2
Continuous power dissipation	
· · · ·	
Junction temperature	
Lead temperature	
Storage temperature	
Recommended Operati	ng Conditions ⁽³⁾

Recommended operating conditions	
Supply voltage (V _{DD}) 9.0V to 16.0V	/
SW voltage (V _{SW})	
(-10V / <100ns) to 100V - VDD)
SW slew rate	3
Operating junction temp. (T _J)40°C to 125°C)

Thermal Resistance ⁽⁴⁾ θ_{JA} θ_{JC}

SOIC-8 EP 50 12 ... °C/W

NOTES:

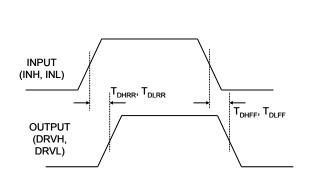
- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J(MAX), the junction-to-ambient thermal resistance θ_{JA}, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D(MAX)=(T_J(MAX)-T_A)/ θ_{JA}. Exceeding the maximum allowable power dissipation produces an excessive die temperature, causing the regulator to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

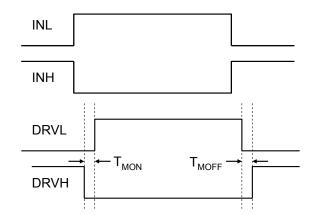
ELECTRICAL CHARACTERISTICS

 $V_{DD} = V_{BST} - V_{SW} = 12V$, $V_{SS} = V_{SW} = 0V$, no load at DRVH and DRVL, $T_J = -40^{\circ}C$ to $+125^{\circ}C$, typical values tested at $T_J = +25^{\circ}C$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Supply Currents						
VDD quiescent current		INL = INH = 0		120	160	μA
VDD operating current	IDDO	fsw = 500kHz		9		mA
Floating driver quiescent				70	100	
current	IBSTQ	INL = INH = 0		70	100	μA
Floating driver operating current	IBSTO	fsw = 500kHz		8.5		mA
Leakage current	Ilk	BST = SW = 100V		0.05	2.5	μA
Inputs				•		
INL/INH high				2.2	2.6	V
INL/INH low			1	1.5		V
INL/INH internal pull-down resistance	RIN			185		kΩ
Under-Voltage Protection (UV	>)	_	I			
VDD rising threshold	, Vddr		8.1	8.5	8.9	V
VDD hysteresis	Vddh			0.5		V
(BST - SW) rising threshold	VBSTR		6.8	7.4	8	V
(BST - SW) hysteresis	VBSTH			0.55		V
Bootstrap Diode	-		1			
Bootstrap diode VF @ 100µA	V _{F1}			0.5		V
Bootstrap diode VF @ 100mA	V _{F2}			0.95		V
Bootstrap diode dynamic R	R _D	@ 100mA		2.3		Ω
Low-Side Gate Driver			1			
Low-level output voltage	Voll	I ₀ = 100mA		0.08		V
High-level output voltage to rail	Vohl	I ₀ = -100mA		0.23		V
		$V_{DRVL} = 0V, V_{DD} = 12V$		3		Α
Peak pull-up current ⁽⁵⁾	IOHL	$V_{DRVL} = 0V, V_{DD} = 16V$		4.7		Α
Deals avail device available (5)		$V_{DRVL} = V_{DD} = 12V$		4.5		Α
Peak pull-down current (5)	I _{OLL}	$V_{DRVL} = V_{DD} = 16V$		6		Α
Floating Gate Driver				•		•
Low-level output voltage	Volh	I ₀ = 100mA		0.08		V
High-level output voltage to rail	Vонн	I ₀ = -100mA		0.23		V
Dook null up ourront (5)		$V_{DRVH} = 0V, V_{DD} = 12V$		2.6		Α
Peak pull-up current ⁽⁵⁾	Іонн	$V_{DRVH} = 0V, V_{DD} = 16V$		4		Α
Deck pull down ourrept (5)	L	$V_{DRVH} = V_{DD} = 12V$		4.5		Α
Peak pull-down current (5)	Iolh	$V_{DRVH} = V_{DD} = 16V$		5.9		Α
Switching spec – low-side gate driver						
Turn-off propagation delay INL falling to DRVL falling	T _{DLFF}			20		ns
Turn-on propagation delay INL rising to DRVL rising	T _{DLRR}			20		
DRVL rise time		C _L = 2.2nF		15		ns
DRVL fall time		C _L = 2.2nF		9		ns

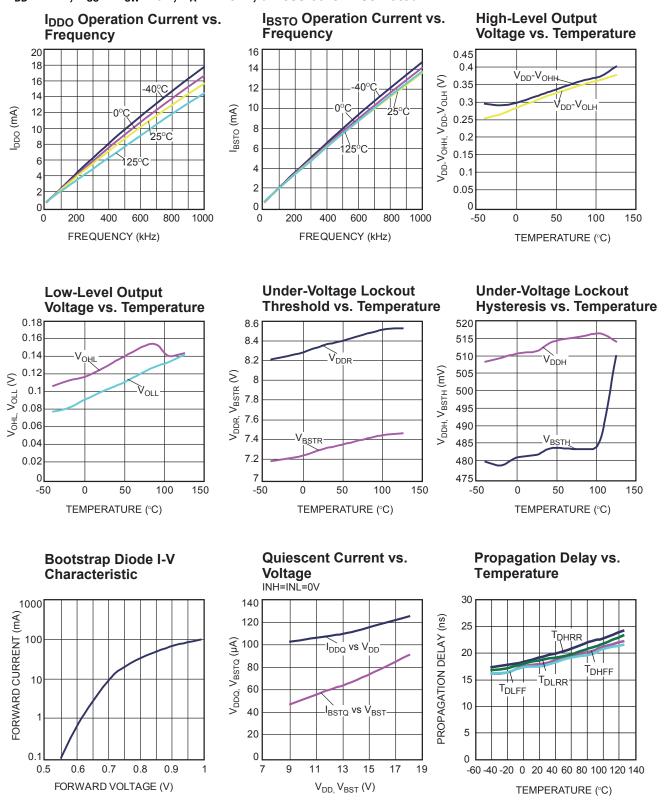
ELECTRICAL CHARACTERISTICS (continued)

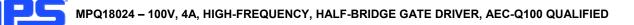

 $V_{DD} = V_{BST} - V_{SW} = 12V$, $V_{SS} = V_{SW} = 0V$, no load at DRVH and DRVL, $T_J = -40^{\circ}C$ to $+125^{\circ}C$, typical values tested at $T_J = +25^{\circ}C$, unless otherwise noted.


Parameter	Symbol	Condition	Min	Тур	Max	Units
Switching Spec – Floating Gat	e Driver					
Turn-off propagation delay INL falling	TDHFF			20		ns
Turn-on propagation delay INL rising to DRVH rising	T _{DHRR}			20		ns
DRVH rise time		C _L = 2.2nF		15		ns
DRVH fall time		C∟ = 2.2nF		12		ns
Switching Spec – Matching						
Floating driver turn-off to low- side drive turn-on ⁽⁵⁾	T _{MON}			1	5	ns
Low-side driver turn-off to floating driver turn-on ⁽⁵⁾	TMOFF			1	5	ns
Minimum input pulse width that changes the output	T _{PW}				50 ⁽⁵⁾	ns
Bootstrap diode turn-on or turn-off time	T _{BS}			10 ⁽⁵⁾		ns
Thermal shutdown (5)				170		°C
Thermal shutdown hysteresis				25		°C

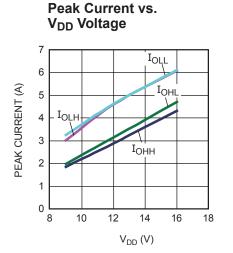
NOTE:

5) Guaranteed by design.

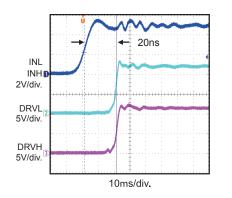

TIMING DIAGRAM


TYPICAL PERFORMANCE CHARACTERISTICS

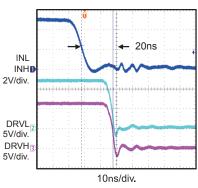
 V_{DD} = 12V, V_{SS} = V_{SW} = 0V, T_A = +25°C, unless otherwise noted.

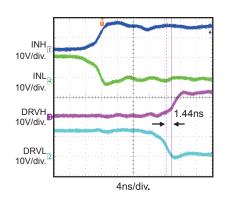

MPQ18024 Rev. 1.0 12/19/2018

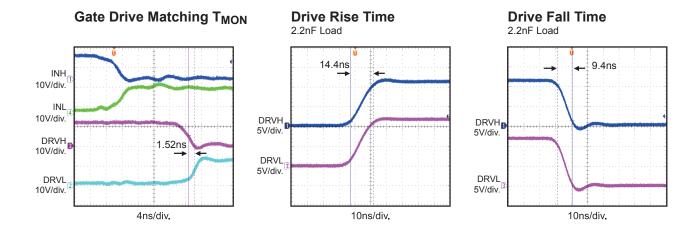
www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2018 MPS. All Rights Reserved.



TYPICAL PERFORMANCE CHARACTERISTICS (continued)

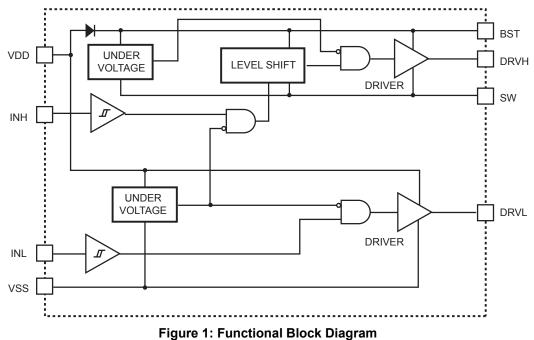

 V_{DD} = 12V, V_{SS} = V_{SW} = 0V, T_A = +25°C, unless otherwise noted.


Turn-On Propagation Delay



Turn-Off Propagation Delay

Gate Drive Matching T_{MOFF}



MPQ18024 Rev. 1.0 12/19/2018

www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2018 MPS. All Rights Reserved.

BLOCK DIAGRAM

APPLICATION

The input signals of INH and INL can be controlled independently. If both INH and INL control the high-side MOSFET (HS-FET) and low-side MOSFET (LS-FET) of the same bridge, shoot through can be prevented by setting a sufficient dead time between INH and INL low, and vice versa (see Figure 2). Dead time is defined as the time interval between INH low and INL low.

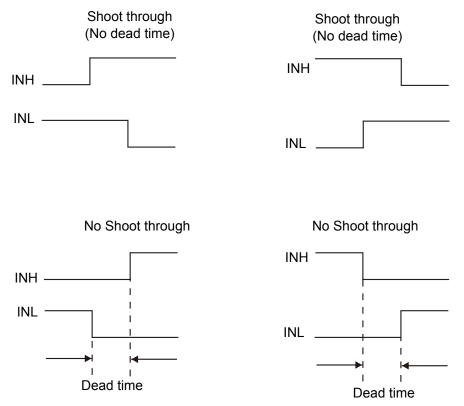


Figure 2: Shoot-Through Timing Diagram

REFERENCE DESIGN CIRCUITS

Half-Bridge Converter

The MPQ18024 drives the MOSFETs with alternating signals (with dead time) in a halfbridge converter topology. Because the pulsewidth modulation (PWM) controller drives INH and INL with alternating signals, the input voltage can rise as high as 100V (see Figure 3 through Figure 5).

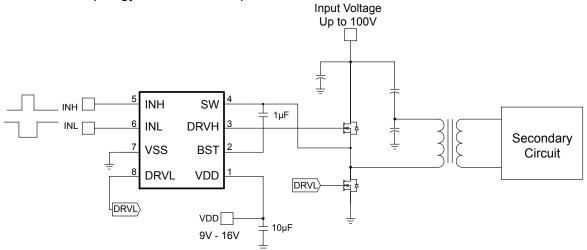


Figure 3: Half-Bridge Converter

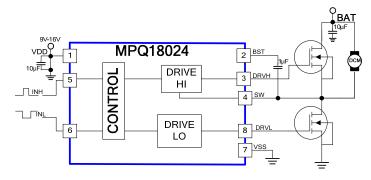


Figure 4: Half-Bridge for Unidirectional Motor

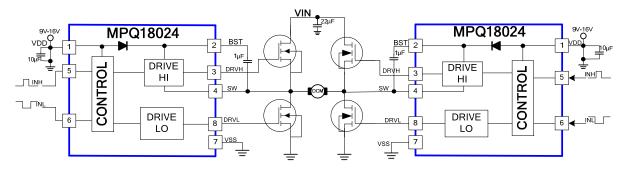


Figure 5: 2x MPQ18024 for One Bidirectional DC Motor