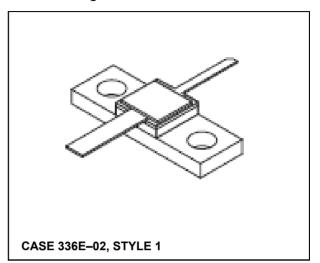


Rev. V1

Vdc


Features

- Guaranteed performance @1.215GHz, 28Vdc
- Output power: 5.0W CW
- Minimum gain = 8.5dB, 10.3dB (Typ.)
- RF performance curves for 28 Vdc and 36 Vdc operation
- 100% tested for load mismatch at all phase angles with 10:1 VSWR
- Hermetically sealed industry standard package
- · Silicon nitride passivated
- Gold metallized, emitter ballasted for long life and resistance to metal migration
- Internal input matching for broadband operation

Description and Applications

Designed for CW and long-pulsed common base amplifier applications, such as JTIDS and Mode S, in the 0.96 to 1.215 GHz frequency range with high overall duty cycles.

Product Image

Maximum Ratings Symbol Value Collector-Emitter Voltage V_{CES} 55 Collector-Base Voltage V_{CBO} 55

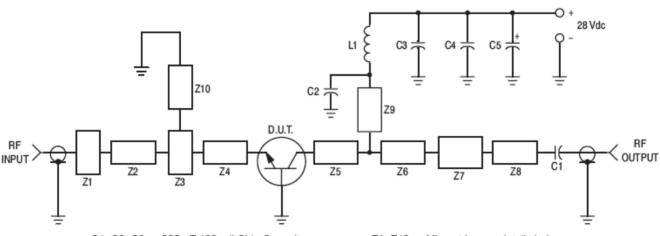
	020		
Collector-Base Voltage	V _{CBO}	55	Vdc
Emitter–Base Voltage	V _{EBO}	3.5	Vdc
Collector Current — Continuous (1)	Ic	1.25	mAdc
Total Device Dissipation @ T _A = 25°C (1) Derate above 25°C	P _D	25 143	Watt mW/°C
Storage Temperature Range	T _{stg}	-65 to +200	°C
Junction Temperature	T _J	200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (2)		7.0	°C/W

NOTES:

- 1. These devices are designed for RF operation. The total device dissipation rating applies only when the devices are operated as RF amplifiers.
- 2. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.


1

Rev. V1

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage (I _C = 25 mAdc, V _{BE} = 0)	V _{(BR)CES}	55	_	_	Vdc
Collector-Base Breakdown Voltage (I _C = 25 mAdc, I _E = 0)	V _{(BR)CBO}	55	_	_	Vdc
Emitter–Base Breakdown Voltage (I _E = 0.5 mAdc, I _C = 0)	V _{(BR)EBO}	3.5	_	_	Vdc
Collector Cutoff Current (V _{CB} = 28 Vdc, I _E = 0)	I _{CBO}	_	_	1.0	mAdc
ON CHARACTERISTICS	•				
DC Current Gain (I _C = 500 mAdc, V _{CE} = 5.0 Vdc)	h _{FE}	20	_	100	_
DYNAMIC CHARACTERISTICS					
Output Capacitance (V _{CB} = 28 Vdc, I _E = 0, f = 1.0 MHz)	Cob	_	7.0	10	pF
FUNCTIONAL TESTS	•	•	•	•	
Common–Base Amplifier Power Gain (V _{CC} = 28 Vdc, P _{out} = 5.0 W, f = 1215 MHz)	G _{PB}	8.5	10.3	_	dB
Collector Efficiency (V _{CC} = 28 Vdc, P _{out} = 5.0 W, f = 1215 MHz)	η	45	55	_	%
Load Mismatch (V _{CC} = 28 Vdc, P _{out} = 5.0 W, f = 1215 MHz, VSWR = 10:1 All Phase Angles)	Ψ	No Degradation in Output Power			

C1, C2, C3 - 220 pF 100 mil Chip Capacitor

 $C4 - 0.1\,\mu\text{F}$

C5 - 47 µF/50 V Electrolytic

L1 - 3 turn #18 AWG, 1/8" ID, 0.18" Long

Z1–Z10 — Microstrip, see details below Board Material — 0.030" Glass Teflon, 2.0 oz. Copper, $\varepsilon_{\rm r}$ = 2.55

Rev. V1

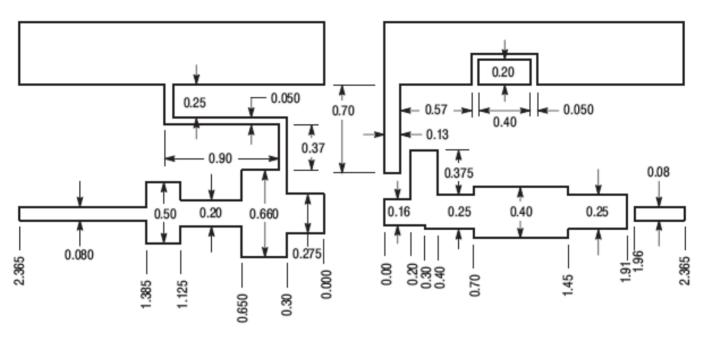


Figure 1. Test Circuit

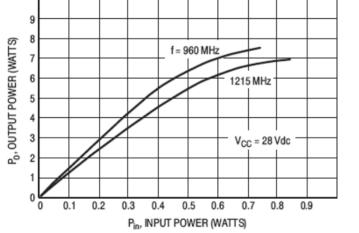


Figure 2. Output Power versus Input Power

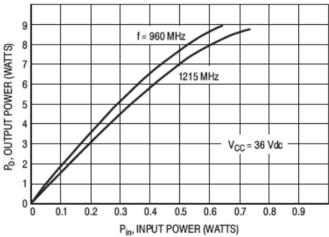
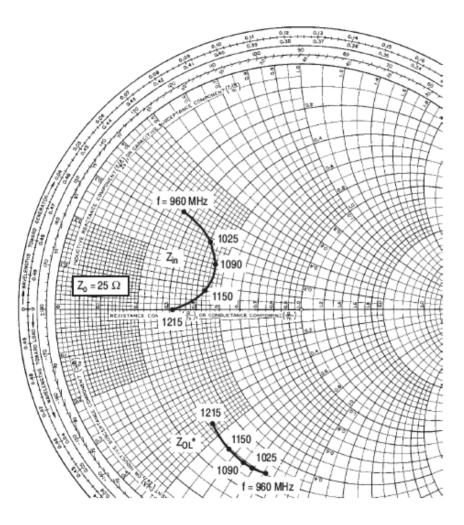



Figure 3. Output Power versus Input Power

Rev. V1

 $P_{out} = 5 W$, $V_{CC} = 28 V$

f	Z _{in}	Z _{OL} *
MHz	OHMS	OHMS
960	6.5 + j8.5	7.4 - j18.9
1025	10.0 + j7.0	7.2 - j17.4
1090	11.2 + j4.9	7.1 - j16.3
1150	10.8 + j2.0	7.15 - j14.3
1215	7.8 + j0.0	7.8 - j11.2

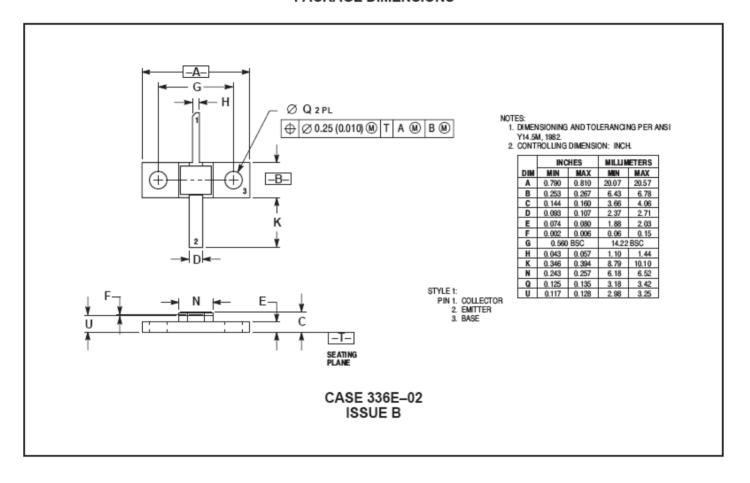

Z_{OL}* = Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

Figure 4. Series Equivalent Input/Output Impedances

Rev. V1

PACKAGE DIMENSIONS

