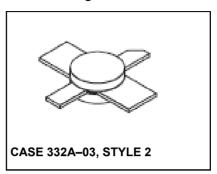
MRF1000MB

Class A, Class AB Microwave Power Silicon NPN Transistor 0.7 W, 960–1215 MHz, 18V

Rev. V1


Features

- Guaranteed performance @ 1090 MHz, 18 Vdc Class A
- Output power: 0.2WMinimum gain: 10dB
- 100% tested for load mismatch at all phase angles with 10:1 VSWR
- Industry standard package
- Nitride passivated
- Gold metallized, emitter ballasted for long life and resistance to metal migration
- · Internal input matching for broadband operation

Description and Applications

Designed for Class A and AB common emitter amplifier applications in the low–power stages of IFF, DME, TACAN, radar transmitters, and CW systems.

Product Image

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector–Emitter Voltage	V _{CEO}	20	Vdc	
Collector-Base Voltage	V _{СВО}	50	Vdc	
Emitter-Base Voltage	V _{EBO}	3.5	Vdc	
Collector Current — Continuous	Ic	200	mAdc	
Total Device Dissipation @ T _C = 25°C (1) Derate above 25°C	P _D	7.0 40	Watts mW/°C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit	
Thermal Resistance, Junction to Case (2)	R _{eJC}	25	°C/W	

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	·				
Collector–Emitter Breakdown Voltage (I _C = 5.0 mAdc, I _B = 0)	V _{(BR)CEO}	20	_	_	Vdc
Collector–Emitter Breakdown Voltage (I _C = 5.0 mAdc, V _{BE} = 0)	V _{(BR)CES}	50	_	_	Vdc
Collector–Base Breakdown Voltage (I _C = 5.0 mAdc, I _E = 0)	V _{(BR)CBO}	50	_	_	Vdc
Emitter–Base Breakdown Voltage (I _E = 1.0 mAdc, I _C = 0)	V _{(BR)EBO}	3.5	_	_	Vdc
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0)	I _{CBO}	_	_	0.5	mAdc
ON CHARACTERISTICS			•	•	•

^{1.} These devices are designed for RF operation. The total device dissipation rating applies only when the device is operated as RF amplifiers.

 h_{FE}

10

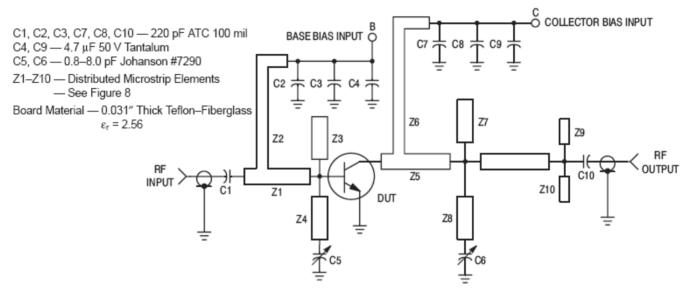
100

1

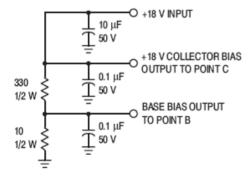
DC Current Gain

(I_C = 100 mAdc, V_{CE} = 5.0 Vdc)

^{2.} Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.



Class A, Class AB Microwave Power Silicon NPN Transistor 0.7 W, 960–1215 MHz, 18V


Rev. V1

ELECTRICAL CHARACTERISTICS — continued (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit		
DYNAMIC CHARACTERISTICS							
Output Capacitance (V _{CB} = 28 Vdc, I _E = 0, f = 1.0 MHz)	C _{ob}	_	2.0	5.0	pF		
FUNCTIONAL TESTS							
Common–Emitter Power Gain — Class A (V _{CE} = 18 Vdc, I _C = 100 mAdc, f = 1090 MHz, P _{out} = 200 mW)	G _{PE}	10	12	_	dB		
Common–Emitter Power Gain — Class AB (V _{CE} = 18 Vdc, I _{CQ} = 10 mAdc, f = 1090 MHz, P _{out} = 0.7 W)	G _{PE}	_	10.7	_	dB		
Load Mismatch — Class A (V _{CE} = 18 Vdc, I _C = 100 mAdc, f = 1090 MHz, P _{out} = 200 mW, VSWR = 10:1 All Phase Angles)	Ψ	No Degradation in Power Output					

Class AB Bias Control Circuit 18 V Output I_{CQ} 10 mA Nominal

Class A Constant Current Bias Control Circuit I_C = 100 mA, V_{CE} = 18 V

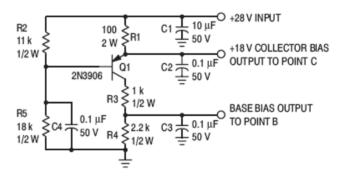
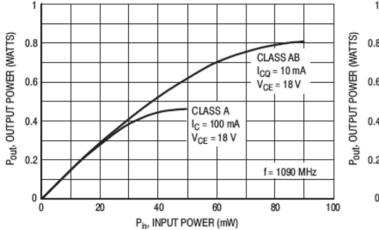



Figure 1. 1090 MHz Test Circuit

Class A, Class AB Microwave Power Silicon NPN Transistor 0.7 W, 960–1215 MHz, 18V

Rev. V1

CLASS A 0.6 Pin = 60 mW $I_{CQ} = 10 \text{ mA}$ V_{CE} = 18 V 0.4 CLASS A 0.2 $P_{in} = 20 \text{ mW}$ I_C = 100 mA V_{CE} = 18 V 0 960 1090 1215 f, FREQUENCY (MHz)

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Frequency

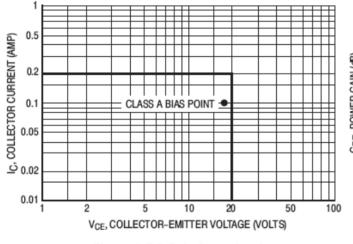


Figure 4. DC Safe Operating Area

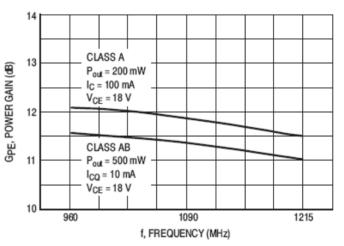
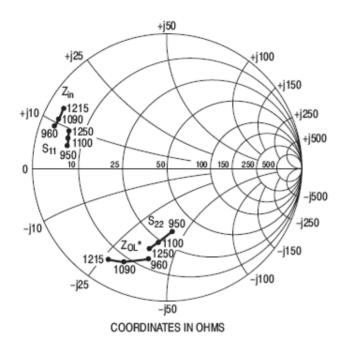



Figure 5. Power Gain versus Frequency

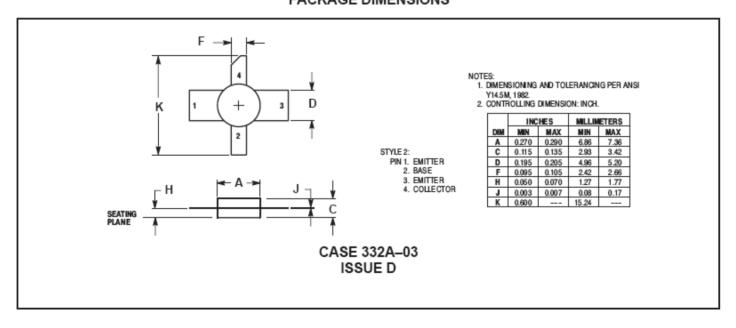
Class A, Class AB Microwave Power Silicon NPN Transistor 0.7 W, 960–1215 MHz, 18V

Rev. V1

SERIES EQUIVALENT IMPEDANCES

Pout = 0.5 W, V_{CE} = 18 Vdc,
I_{CO} = 10 mAdc, Class AB

f	Z _{in}	Z _{OL} *
MHz	Ohms	Ohms
960	3.0 + j9.0	16 – j40
1090	3.2 + j10	8.5 – j31
1215	2.8 + j12	7.0 – j26


Z_{OL}* = Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage, and frequency.

S-PARAMETERS - V_{CE} = 18 Vdc, I_C = 100 mAdc, Class A

f	S ₁	1	S ₂	1	S ₁₂		S ₂₂	
(MHz)	S ₁₁	∠¢	S ₂₁	∠ φ	S ₁₂	∠ φ	S ₂₂	∠¢
950	0.77	166	2.42	40	0.016	42	0.48	-87
1000	0.78	165	2.36	38	0.016	48	0.50	-90
1050	0.77	163	2.31	33	0.016	46	0.51	-94
1100	0.77	162	2.31	28	0.016	46	0.54	-97
1150	0.78	161	2.20	23	0.015	46	0.57	-100
1200	0.78	159	2.20	19	0.016	47	0.59	-103
1250	0.78	158	2.12	12	0.016	42	0.61	-106

Figure 6. Common-Emitter S-Parameters and Series Equivalent Input/Output Impedances Replaces MRF1000MA/D

PACKAGE DIMENSIONS

