

Rev. V1

Designed for 1025–1150 MHz pulse common base amplifier applications such as TCAS, TACAN and Mode–S transmitters.

- Guaranteed performance @ 1090 MHz
 Output power = 350 W Peak
 Gain = 8.5 dB min, 9.0 dB (typ.)
- 100% tested for load mismatch at all phase angles with 10:1 VSWR
- Hermetically sealed package
- Silicon nitride passivated
- Gold metallized, emitter ballasted for long life and resistance to metal migration
- Internal input and output matching
- · Characterized using Mode-S pulse format

Product Image

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector–Emitter Voltage	V _{CES}	65	Vdc	
Collector-Base Voltage	V _{CBO}	65 Vd		
Emitter-Base Voltage	V _{EBO}	3.5	Vdc	
Collector Current — Peak (1)	I _C	31	Adc	
Total Device Dissipation @ T _C = 25°C (1), (2) Derate above 25°C	P _D	1590 9.1	Watts W/°C	
Storage Temperature Range	T _{stg}	−65 to +200 °C		
Junction Temperature	TJ	200	°C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (3)		0.11	°C/W

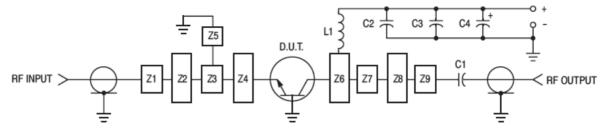
NOTES:

- 1. Under pulse RF operating conditions.
- These devices are designed for RF operation. The total device dissipation rating applies only when the devices are operated as pulsed RF amplifiers.
- Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques. (Worst Case θ_{JC} measured using Mode–S pulse train, 128 μs burst 0.5 μs on, 0.5 μs off repeating at 6.4 ms interval.)

1

MRF10350

Microwave Pulse Power Silicon NPN Transistor 350W (peak), 1025–1150MHz


Rev. V1

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•		•	•	•
Collector–Emitter Breakdown Voltage (I _C = 60 mAdc, V _{BE} = 0)	V _{(BR)CES}	65	_	_	Vdc
Collector–Base Breakdown Voltage (I _C = 60 mAdc, I _E = 0)	V _{(BR)CBO}	65	_	_	Vdc
Emitter–Base Breakdown Voltage (I _E = 10 mAdc, I _C = 0)	V _{(BR)EBO}	3.5	_	_	Vdc
Collector Cutoff Current (V _{CB} = 36 Vdc, I _E = 0)	I _{CBO}	_	_	25	mAdc
ON CHARACTERISTICS	•				
DC Current Gain (I _C = 5.0 Adc, V _{CE} = 5.0 Vdc)	h _{FE}	20	_	_	_
FUNCTIONAL TESTS					
Common-Base Amplifier Power Gain (V _{CC} = 50 Vdc, P _{out} = 350 W Peak, f = 1090 MHz)	G _{PB}	8.5	9.0	_	dB
Collector Efficiency (V _{CC} = 50 Vdc, P _{out} = 350 W Peak, f = 1090 MHz)	η	40	_	_	%
Load Mismatch (V _{CC} = 50 Vdc, P _{out} = 350 W Peak, f = 1090 MHz, VSWR = 10:1 All Phase Angles)	Ψ	No Degradation in Output Power			

Rev. V1

C1 - 75 pF 100 Mil Chip Capacitor

C2 - 39 pF 100 Mil Chip Capacitor

C3 — 0.1 µF

 $C4-100~\mu F,\,100~Vdc,\,Electrolytic$ L1 — 3 Turns #18 AWG, 1/8" ID, 0.18 Long

Z1-Z9 - Microstrip, See Details Board Material - Teflon, Glass Laminate Dielectric Thickness = 0.030" ε_r = 2.55, 2 Oz. Copper

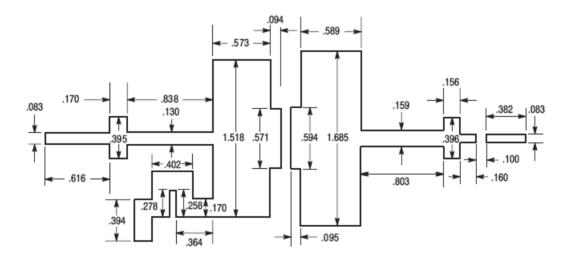


Figure 1. Test Circuit

Rev. V1

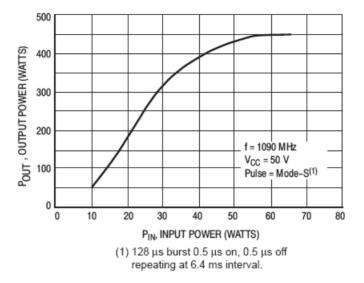
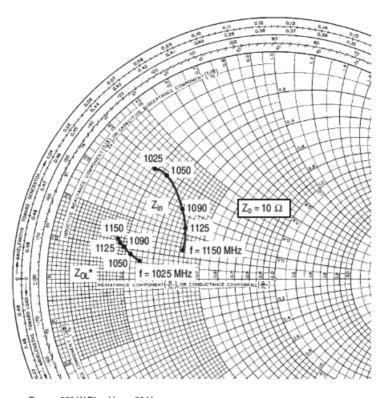



Figure 2. Output Power versus Input Power

Rev. V1

 P_{OUT} = 350 W Pk V_{CC} = 50 V

f MHz	Z _{in} OHMS	Z _{OL} * (1) OHMS
1025	1.92 + j3.80	2.52 + j0.70
1050	2.44 + j3.92	2.18 + j0.85
1090	3.55 + j3.02	1.94 + j1.13
1125	4.11 + j2.27	1.80 + j1.22
1150	4.13 + j1.35	1.71 + j1.31

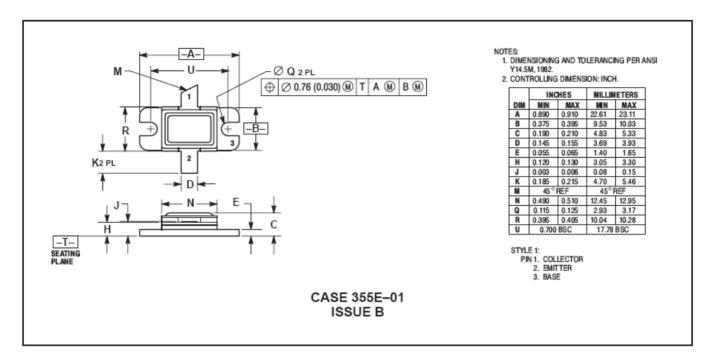

Z_{OL}* is the conjugate of the optimum load impedance into which the device operates at a given output power voltage and frequency.

Figure 3. Series Equivalent Input/Output Impedances

Rev. V1

PACKAGE DIMENSIONS

