

Rev. V1

Designed for 1025–1150 MHz pulse common base amplifier applications such as TCAS, TACAN and Mode–S transmitters.

- Guaranteed performance @ 1090 MHz
 Output power = 500 W peak
 Gain = 8.5 dB min, 9.0 dB (typ.)
- 100% tested for load mismatch at all phase angles with 10:1 VSWR
- · Hermetically sealed industry package
- Silicon nitride passivated
- Gold metalized, emitter ballasted for long life and resistance to metal migration
- Internal input and output matching
- Characterized with 10μs, 1% duty cycle pulses

Product Image

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V _{CES}	65	Vdc
Collector-Base Voltage	Vcво	65	Vdc
Emitter–Base Voltage	V _{EBO}	3.5	Vdc
Collector Current — Peak (1)	IC	29	Adc
Total Device Dissipation @ T _C = 25°C (1), (2) Derate above 25°C	PD	1460 8.3	Watts W/°C
Storage Temperature Range	T _{stg}	-65 to +200	°C
Junction Temperature	TJ	200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Case (3)	$R_{\theta JC}$	0.12	°C/W

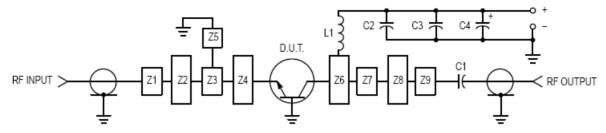
NOTES:

- 1. Under pulse RF operating conditions.
- These devices are designed for RF operation. The total device dissipation rating applies only when the devices are operated as pulsed RF amplifiers.
- 3. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques. (Worst case θ_{JC} value measured @ 32 μ s, 2%.)

1

MRF10502

Microwave Pulse Power Silicon NPN Transistor 500W (peak), 1025–1150MHz


Rev. V1

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage (I _C = 60 mAdc, V _{BE} = 0)	V(BR)CES	65	_	_	Vdc
Collector-Base Breakdown Voltage (IC = 60 mAdc, IE = 0)	V(BR)CBO	65	_	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 mAdc, I _C = 0)	V(BR)EBO	3.5	_	_	Vdc
Collector Cutoff Current (V _{CB} = 36 Vdc, I _E = 0)	I _{CBO}	_	_	25	mAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 5.0 Adc, V _{CE} = 5.0 Vdc)	hFE	20	_	_	_
FUNCTIONAL TESTS					
Common–Base Amplifier Power Gain (V _{CC} = 50 Vdc, P _{out} = 500 W Peak, f = 1090 MHz)	GPB	8.5	9.0	_	dB
Collector Efficiency (V _{CC} = 50 Vdc, P _{out} = 500 W Peak, f = 1090 MHz)	η	40	45	_	%
Load Mismatch (V _{CC} = 50 Vdc, P _{out} = 500 W Peak, f = 1090 MHz, VSWR = 10:1 All Phase Angles)	Ψ	No Degradation in Output Power			

Rev. V1

C1 — 82 pF 100 Mil Chip Capacitor

C2 — 39 pF 100 Mil Chip Capacitor

 $C3 - 0.1 \, \mu F$

C4 - 100 µF, 100 Vdc, Electrolytic

L1 - 3 Turns #18 AWG, 1/8" ID, 0.18 Long

Z1–Z9 — Microstrip, See Details Board Material — Teflon, Glass Laminate Dielectric Thickness = 0.030'' ϵ_r = 2.55, 2 Oz. Copper

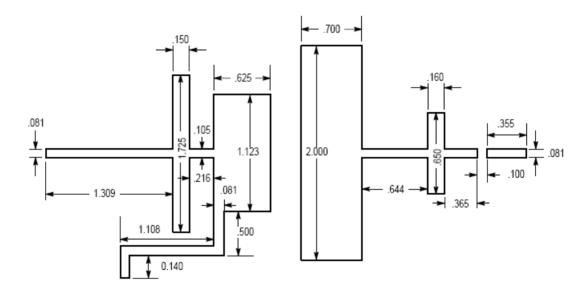


Figure 1. Test Circuit

Rev. V1

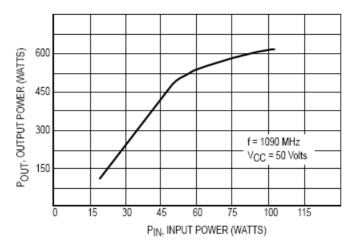
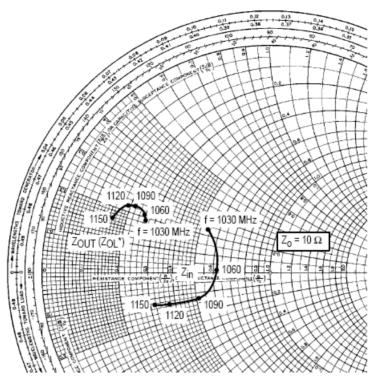



Figure 2. Output Power versus Input Power

Rev. V1

POLIT = 500 W Pk VCC = 50 V

001				
f MHz	Z _{in} OHMS	Z _{OL} * (Z _{OUT}) OHMS		
1030	5.3 + j2.25	2.6 + j1.89		
1060	6.2 + j0.2	2.56 + j2.0		
1090	5.2 – j1.4	2.12 + j2.2		
1120	3.7 – j1.35	1.9 + j2.15		
1150	3.15 – j1.3	1.6 + j1.62		

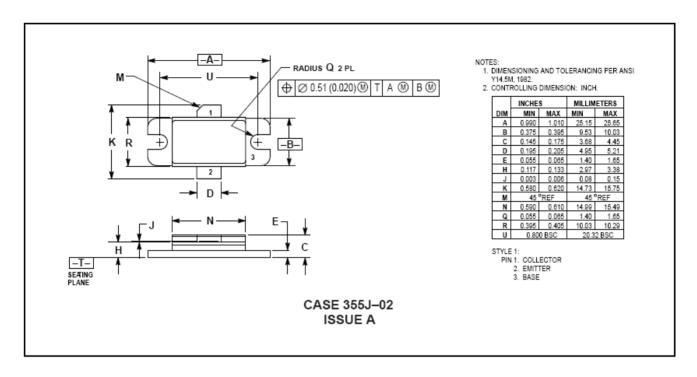

Z_{OL}* is the conjugate of the optimum load impedance into which the device operates at a given output power voltage and frequency.

Figure 3. Series Equivalent Input/Output Impedances

Rev. V1

PACKAGE DIMENSIONS

