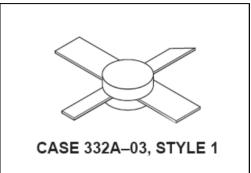
MRF1150MB


Microwave Pulse Power Silicon NPN Transistor 150W (peak), 960-1215MHz

Rev. V1

Designed for Class B and C common base amplifier applications in short pulse TACAN, IFF, and DME transmitters.

- Guaranteed performance @ 1090 MHz, 50 Vdc Output power = 150 W peak Minimum gain = 7.8 dB
- 100% tested for load mismatch at all phase angles with 10:1 VSWR
- Industry standard package
- Nitride passivated
- Gold metallized, emitter ballasted for long life and resistance to metal migration
- Internal input matching for broadband operation

Product Image

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	70	Vdc
Emitter–Base Voltage	V _{EBO}	4.0	Vdc
Collector Current — Peak (1)	I _C	12	Adc
Total Device Dissipation @ T _C = 25°C (1) (2) Derate above 25°C	P _D	583 3.33	Watts W/∘C
Storage Temperature Range	T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (3)		0.3	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

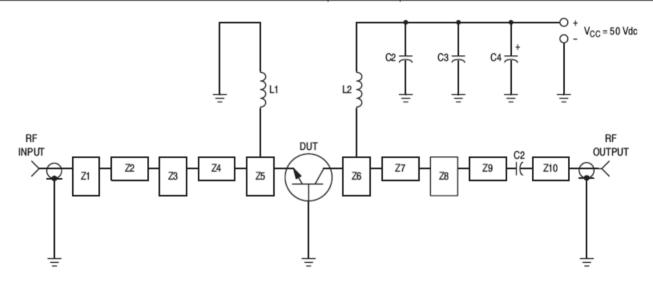
Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•		•		•
Collector–Emitter Breakdown Voltage (I _C = 50 mAdc, V _{BE} = 0)	V _(BR) CES	70	_	_	Vdc
Collector-Base Breakdown Voltage (I _C = 50 mAdc, I _E = 0)	V _{(BR)CBO}	70	_	_	Vdc
Emitter–Base Breakdown Voltage (I _E = 5.0 mAdc, I _C = 0)	V _{(BR)EBO}	4.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0)	Ісво	_	_	10	mAdc
ON CHARACTERISTICS					
DC Current Gain (4)	h _{FE}	10	30	_	_

(continued)

Pulse Width = 10 μs, Duty Cycle = 1%.

(I_C = 5.0 Adc, V_{CE} = 5.0 Vdc)

2. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.


- 3. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.
- 4. 80 μs Pulse on Tektronix 576 or equivalent.

Rev. V1

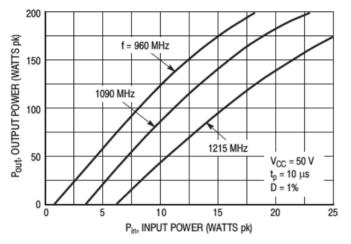
ELECTRICAL CHARACTERISTICS — continued (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
DYNAMIC CHARACTERISTICS	•	•		•	
Output Capacitance (V _{CB} = 50 Vdc, I _E = 0, f = 1.0 MHz)	C _{ob}	_	25	32	pF
FUNCTIONAL TESTS (Pulse Width = 10 μs, Duty Cycle = 1.0%)					
Common–Base Amplifier Power Gain (V _{CC} = 50 Vdc, P _{out} = 150 W pk, f = 1090 MHz)	G _{PB}	7.8	9.8	_	dB
Collector Efficiency (V _{CC} = 50 Vdc, P _{out} = 150 W pk, f = 1090 MHz)	η	35	40	_	%
Load Mismatch (V _{CC} = 50 Vdc, P _{out} = 150 W pk, f = 1090 MHz, VSWR = 10:1 All Phase Angles)	Ψ	No Degradation in Power Output			

C1, C2 — 220 pF Chip Capacitor, 100-mil ATC

C3 — 0.1 µF/100 V

C4 — 47 µF/75 V Electrolytic

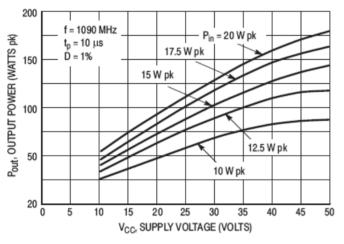

L1, L2 - 3 Turns #18 AWG, 1/8" ID

Z1–Z10 — Distributed Microstrip Elements — See Photomaster Board Material — 0.031" Thick Teflon–Fiberglass, ϵ_r = 2.5

Figure 1. 1090 MHz Test Circuit

Rev. V1

200
Pin = 20 W pk


17.5 W pk

17.5 W pk

12.5 W pk

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Frequency

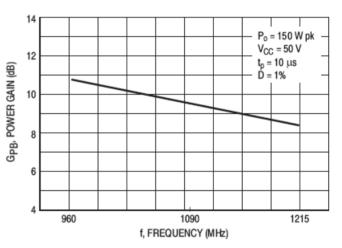
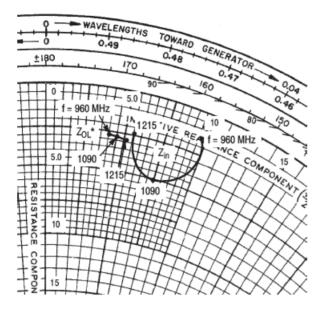



Figure 4. Output Power versus Supply Voltage

Figure 5. Power Gain versus Frequency

Rev. V1

 $P_{out} = 150 \text{ W pk} \quad V_{CC} = 50 \text{ V}$ $t_p = 10 \text{ \mu s} \quad D = 1\%$

f	Z _{in}	Z _{OL} *
MHz	Ohms	Ohms
960	1.5 + j9.6	2.6 + j4.1
1090	5.0 + j7.5	2.7 + j4.6
1215	2.4 + j5.6	2.8 + j5.3

Z_{OL}* = Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage, and frequency.

Figure 6. Series Equivalent Input/Output Impedance

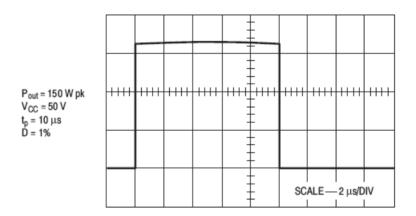
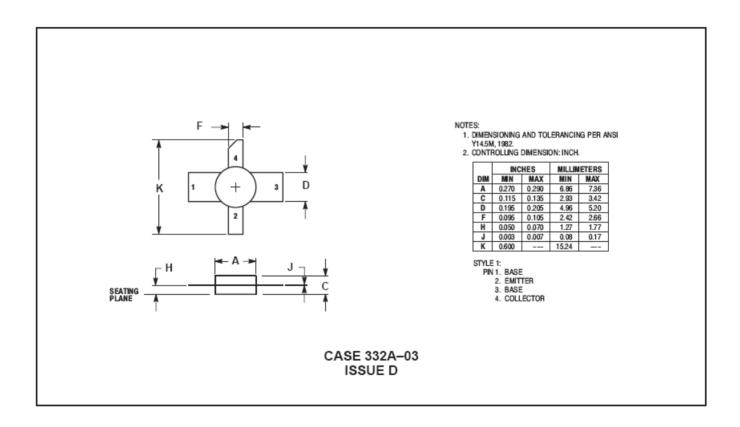



Figure 7. Typical Pulse Performance

Rev. V1

PACKAGE DIMENSIONS

