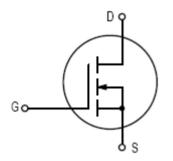
MRF148A


Linear RF Power FET 30W, to 175MHz, 50V

Rev. V1

Designed for power amplifier applications in industrial, commercial and amateur radio equipment to 175MHz.

- Superior high order IMD IMD(d3) (30W PEP): -35 dB (Typ.) IMD(d11) (30W PEP): -60 dB (Typ.)
- Specified 50V, 30MHz characteristics: Output power: 30W Gain: 18dB (Typ.) Efficiency: 40% (Typ.)
- 100% tested for load mismatch at all phase angles with 30:1 VSWR
- Lower reverse transfer capacitance (3.0 pF typ.)

CASE 211–07, STYLE 2

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain–Source Voltage	VDSS	120	Vdc
Drain–Gate Voltage	VDGO	120	Vdc
Gate-Source Voltage	V _{GS}	±40	Vdc
Drain Current — Continuous	ID	6.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	115 0.66	Watts W/∘C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature	TJ	200	°C

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Case	R _{0JC}	1.52	°C/W

NOTE – <u>CAUTION</u> – MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

¹

Linear RF Power FET 30W, to 175MHz, 50V

Max

_ 1.0

100

5.0

5.0

_

_

_

_

_

-35

-60

20

-50

-70

_

No Degradation in Output Power

Rev. V1

Unit

Vdc

mAdc

nAdc

Vdc

Vdc mhos

> pF pF pF

dB

%

dB

dB

Characteristic	Symbol	Min	Тур	
DFF CHARACTERISTICS				
Drain–Source Breakdown Voltage (V_{GS} = 0, I_D = 10 mA)	V(BR)DSS	125	—	Γ
Zero Gate Voltage Drain Current (V_{DS} = 50 V, V_{GS} = 0)	IDSS	_	—	Γ
Gate-Body Leakage Current (V _{GS} = 20 V, V _{DS} = 0)	IGSS	_	—	Γ
ON CHARACTERISTICS				
Gate Threshold Voltage (V _{DS} = 10 V, I _D = 10 mA)	VGS(th)	1.0	2.5	Γ
Drain–Source On–Voltage (V _{GS} = 10 V, I _D = 2.5 A)	VDS(on)	1.0	3.0	Γ
Forward Transconductance (V_{DS} = 10 V, I_D = 2.5 A)	9fs	0.8	1.2	Γ
DYNAMIC CHARACTERISTICS				
Input Capacitance (V _{DS} = 50 V, V _{GS} = 0, f = 1.0 MHz)	Ciss	_	62	Γ
Output Capacitance (V _{DS} = 50 V, V _{GS} = 0, f = 1.0 MHz)	Coss	_	35	Γ
Reverse Transfer Capacitance (V_DS = 50 V, V_GS = 0, f = 1.0 MHz)	Crss	_	3.0	Γ
FUNCTIONAL TESTS (SSB)				
Common Source Amplifier Power Gain(30 MHz)(VDD = 50 V, Pout = 30 W (PEP), IDQ = 100 mA)(175 MHz)	Gps	_	18 15	
Drain Efficiency (30 W PEP) (VDD = 50 V, f = 30 MHz, IDQ = 100 mA) (30 W CW)	η	_	40 50	

IMD(d3)

IMD(d11)

ψ

Gps

IMD(d3)

IMD(d9-13)

NOTE:

Intermodulation Distortion

CLASS A PERFORMANCE

f2 = 30.001 MHz, IDQ = 1.0 A)

Load Mismatch

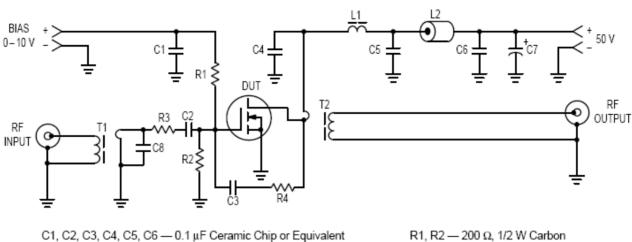
(V_{DD} = 50 V, P_{out} = 30 W (PEP), f = 30; 30.001 MHz, I_{DQ} = 100 mA)

(VDD = 50 V, Pout = 30 W (PEP), f = 30; 30.001 MHz,

IDQ = 100 mA, VSWR 30:1 at all Phase Angles)

(V_{DD} = 50 V, P_{out} = 10 W (PEP), f1 = 30 MHz,

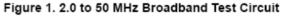
Intermodulation Distortion (1) and Power Gain


1. To MIL-STD-1311 Version A, Test Method 2204B, Two Tone, Reference Each Tone.

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

Linear RF Power FET 30W, to 175MHz, 50V

Rev. V1


C1, C2, C3, C4, C5, C6 — 0.1 μ F Ceramic Chip or Equivalent C7 — 10 μ F, 100 V Electrolytic C8 — 100 pF Dipped Mica L1 — VK200 20/4B Ferrite Choke or Equivalent (3.0 μ H)

L2 - Ferrite Bead(s), 2.0 µH

T1 — 4:1 Impedance Transformer T2 — 1:2 Impedance Transformer

R3 - 4.7 Ω, 1/2 W Carbon

R4 - 470 Ω, 1.0 W Carbon

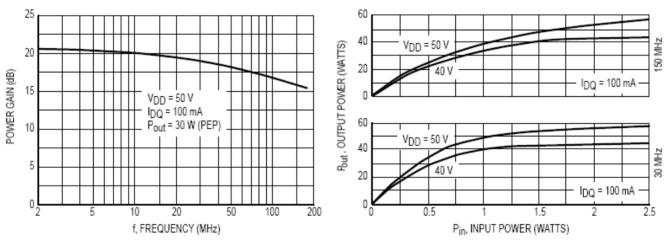
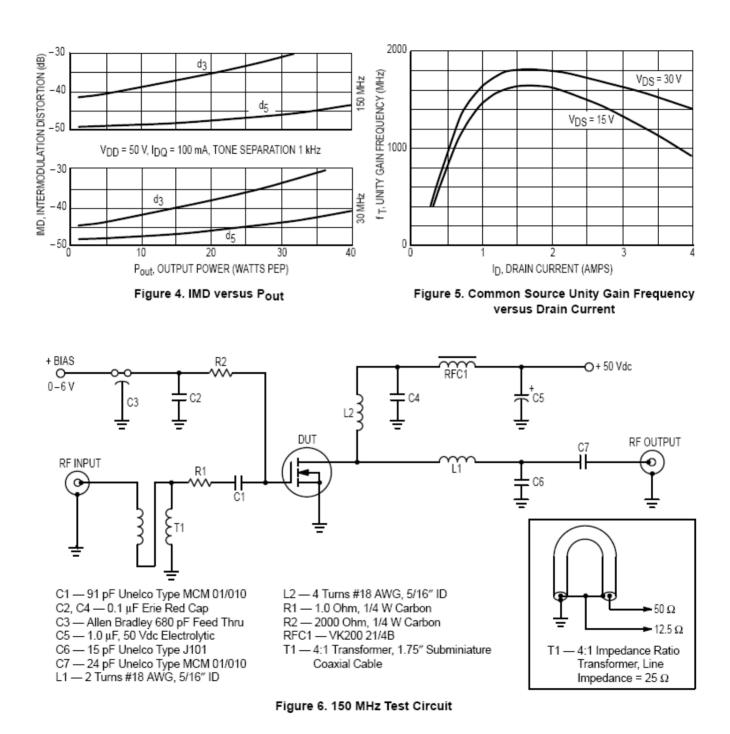


Figure 2. Power Gain versus Frequency

Figure 3. Output Power versus Input Power

3


M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

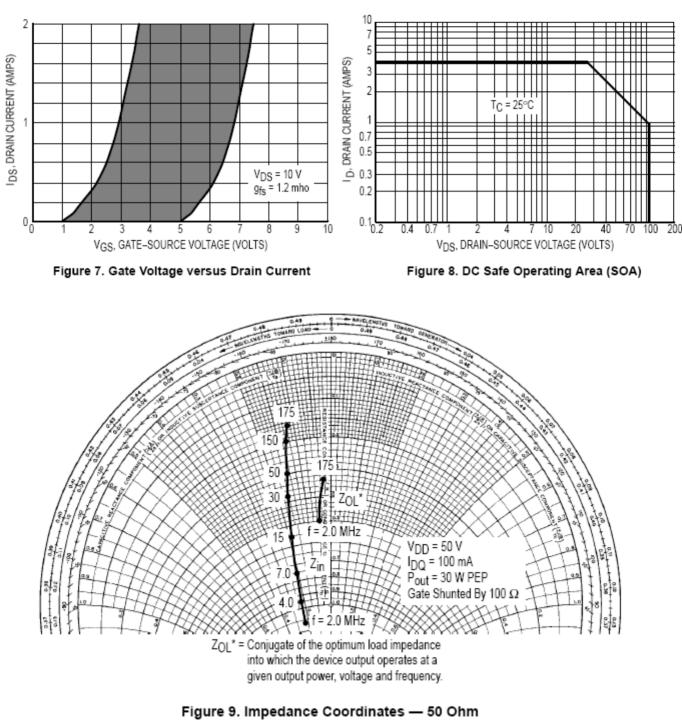
MRF148A

МАСОМ

Linear RF Power FET 30W, to 175MHz, 50V

Rev. V1

4


M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

MRF148A

Linear RF Power FET 30W, to 175MHz, 50V

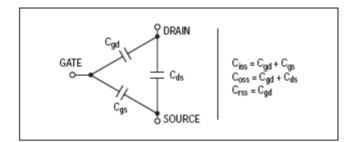
Rev. V1

Characteristic Impedance

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

⁵

Linear RF Power FET 30W, to 175MHz, 50V


RF POWER MOSFET CONSIDERATIONS

MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate-to-drain (C_{gd}), and gate-to-source (C_{gs}). The PN junction formed during the fabrication of the RF MOSFET results in a junction capacitance from drain-to-source (C_{ds}).

These capacitances are characterized as input (C_{iss}), output (C_{oss}) and reverse transfer (C_{rss}) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The C_{iss} can be specified in two ways:

- 1. Drain shorted to source and positive voltage at the gate.
- Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.

LINEARITY AND GAIN CHARACTERISTICS

In addition to the typical IMD and power gain data presented, Figure 5 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to f_T for bipolar transistors.

Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent.

DRAIN CHARACTERISTICS

One figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, $V_{DS(on)}$, occurs in the linear region of the output characteristic and is specified under specific test conditions for gate-source voltage and drain current. For MOSFETs, $V_{DS(on)}$ has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

GATE CHARACTERISTICS

The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high — on the order of 10⁹ ohms resulting in a leakage current of a few nanoamperes.

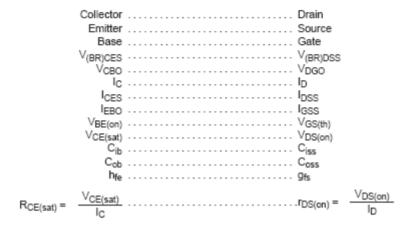
Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, VGS(th).

Gate Voltage Rating — Never exceed the gate voltage rating. Exceeding the rated V_{GS} can result in permanent damage to the oxide layer in the gate region.

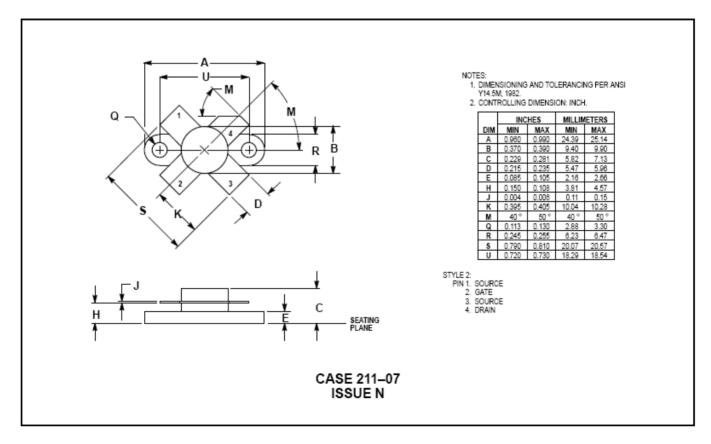
Gate Termination — The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection — These devices do not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended.

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.



Linear RF Power FET 30W, to 175MHz, 50V



Rev. V1

EQUIVALENT TRANSISTOR PARAMETER TERMINOLOGY

PACKAGE DIMENSIONS

7

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.