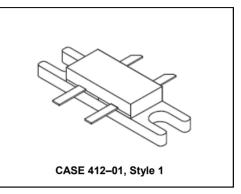
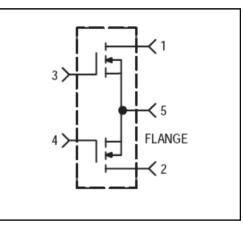


The RF MOSFET Line 40W, 500MHz, 28V


Rev. V1


Designed primarily for wideband large–signal output and driver stages to 30-500~MHz.

N-Channel enhancement mode MOSFET

- Push-pull configuration reduces even numbered harmonics
- Guaranteed performance at 500 MHz, 28 Vdc
 - Output power = 40 W Gain = 14 dB Efficiency = 50%
- Typical performance at 175 MHz, 28 Vdc Output power = 40 W Gain = 17 dB
 - Efficiency = 60%
- Excellent thermal stability, ideally suited for Class A operation
- Facilitates manual gain control, ALC and modulation techniques
- 100% tested for load mismatch at all phase angles with 30:1 VSWR
- Low Crss 4.0 pF @ VDS = 28 V

MAXIMUM RATINGS (TJ = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain–Gate Voltage	VDSS	65	Vdc
Drain–Gate Voltage (R_{GS} = 1.0 M Ω)	VDGR	65	Vdc
Gate-Source Voltage	V _{GS}	± 20	Adc
Drain Current — Continuous	۱ _D	8.0	ADC
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	175 1.0	Watts °C/W
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature	Tj	200	°C
THERMAL CHARACTERISTICS			
Thermal Resistance — Junction to Case	R _{0JC}	1.0	°C/W

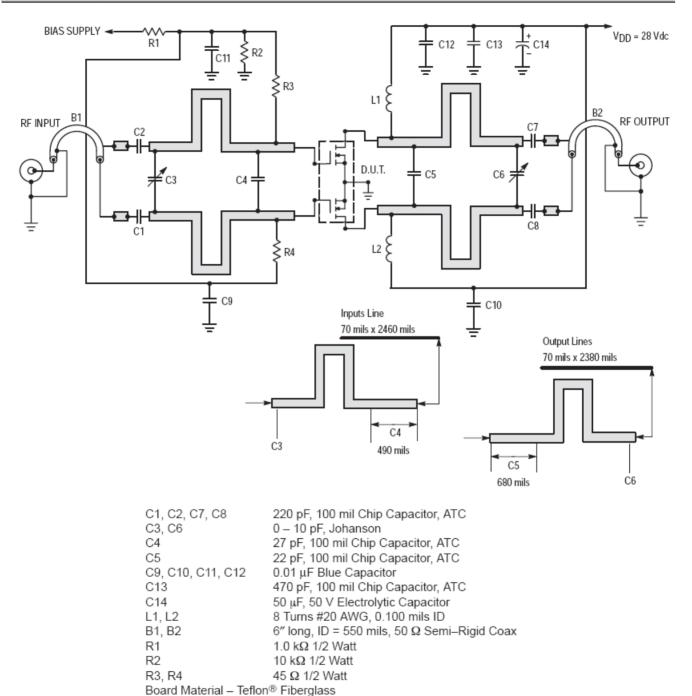
NOTE — <u>CAUTION</u> — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

¹

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

The RF MOSFET Line 40W, 500MHz, 28V

Rev. V1


ELECTRICAL	CHARACTERISTICS	(T _C = 25°C unless otherwise noted)
LECONNOAL		(IC - 25 C unless outerwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS (1)	•					
Drain–Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = 5.0 mA)	V(BR)DSS	65	_	_	Vdc	
Zero Gate Voltage Drain Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	IDSS	_	_	0.5	mA	
Gate-Source Leakage Current (V _{GS} = 20 Vdc, V _{DS} = 0 Vdc)	IGSS	_	_	1.0	μΑ	
ON CHARACTERISTICS (1)						
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 25 mA)	V _{GS(th)}	1.5	3.0	4.5	Vdc	
Forward Transconductance (V _{DS} = 10 Vdc, I _D = 1.5 A)	9fs	0.9	1.1	_	mS	
DYNAMIC CHARACTERISTICS (1)	ı			L		
Input Capacitance (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz)	C _{iss}	_	28	_	pF	
Output Capacitance (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz)	C _{oss}	_	30	_	pF	
Reverse Transfer Capacitance (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz)	C _{rss}	_	4.0		pF	
FUNCTIONAL CHARACTERISTICS (2)						
Common Source Power Gain (V _{DD} = 28 Vdc, P _{out} = 40 W, f = 500 MHz, I _{DQ} = 100 mA)	G _{ps}	14	16	_	dB	
Drain Efficiency (V _{DD} = 28 Vdc, P _{out} = 40 W, f = 500 MHz, I _{DQ} = 100 mA)	η	50	55	_	%	
Electrical Ruggedness (V _{DD} = 28 Vdc, P _{out} = 40 W, f = 500 MHz, I _{DQ} = 100 mA) Load VSWR = 30:1, All phase angles at frequency of test	Ψ	No [No Degradation in Output Power			
Series Equivalent Input Impedance (V _{DD} = 28 Vdc, P _{out} = 40 W, f = 500 MHz, I _{DQ} = 100 mA)	Z _{in}	_	2.88 –j7.96	_	Ohms	
Series Equivalent Output Impedance (V _{DD} = 28 Vdc, P _{out} = 40 W, f = 500 MHz, I _{DQ} = 100 mA)	Z _{out}	_	6.12 –j9.43	_	Ohms	

(1) Each transistor chip measured separately.

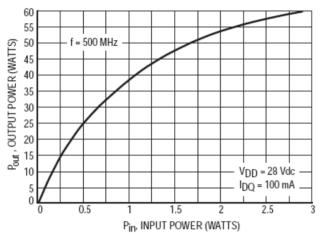
(2) Both transistor chips operating in a push-pull amplifier.

The RF MOSFET Line 40W, 500MHz, 28V

Rev. V1

MACOM

Figure 1. MRF166W 500 MHz Test Circuit Schematic


Dielectric Thickness = 0.30", εr = 2.55 Copper Clad, 2.0 oz. Copper

3

MACOM

The RF MOSFET Line 40W, 500MHz, 28V

24 Pout, OUTPUT POWER (WATTS) 20 f = 500 MHz 16 12 8 VDD = 13.5 Vdc I_{DQ} = 100 mA 0 0.4 0.8 1.6 2.4 2.8 0 1.2 2 Pin, INPUT POWER (WATTS)

Figure 2. Output Power versus Input Power, 28 Vdc

Figure 3. Output Power versus Input Power, 13.5 Vdc

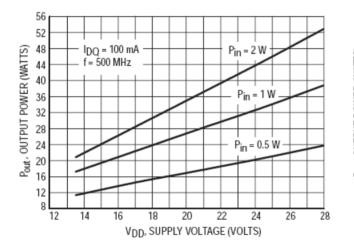


Figure 4. Output Power versus Supply Voltage

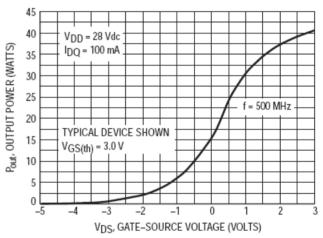


Figure 5. Output Power versus Gate Voltage

4

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

Rev. V1

The RF MOSFET Line 40W, 500MHz, 28V

Rev. V1

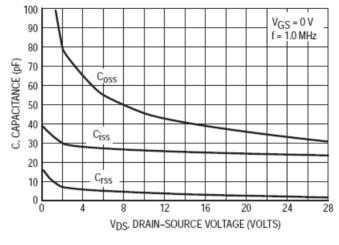
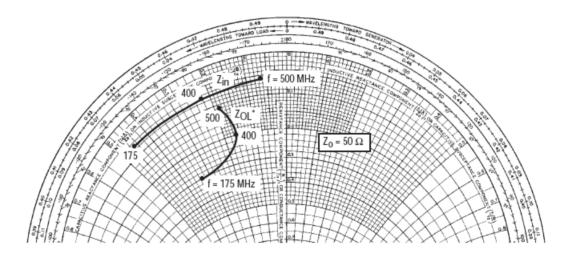



Figure 6. Capacitance versus Voltage

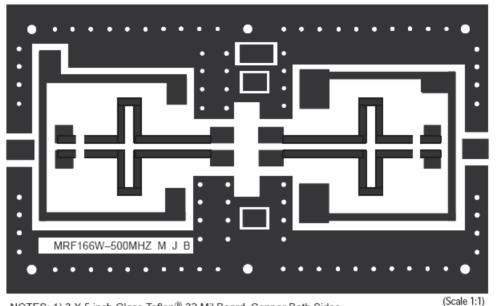
V_{DD} = 28 Vdc, I_{DQ} = 100 mA, P_{out} = 40 W

f MHz	Z _{in} Ohms	Z _{OL} * Ohms
175	3.7 – j 22.4	15.2 – j 16.6
400	3.6 – j 10.99	10.3 – j 7.99
500	2.88 – j 7.96	6.12 – j 9.43

 Z_{OL}^* = Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

NOTE: Input and output impedance values given are measured from gate to gate and drain to drain respectively.

Table 1. Input and Output Impedances


5

The RF MOSFET Line 40W, 500MHz, 28V

Rev. V1

NOTES: 1) 3 X 5 inch Glass Teflon[®] 32 Mil Board, Copper Both Sides 2) Small Holes are 40 Mils ID and Plated Through 3) Large Holes are 140 Mils ID and Plated Through

Figure 8. MRF166W Circuit Board Photomaster

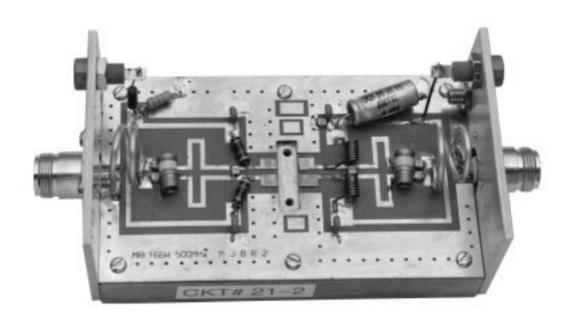


Figure 9. MRF166W Test Fixture

6

The RF MOSFET Line 40W, 500MHz, 28V

Rev. V1

Table 1. Common Source S-Parameters (VDS = 24 V, ID = 230 mA)									
f	\$ ₁₁		\$ ₂₁			\$ ₁₂		\$22	
MHz	\$ ₁₁	φ	\$ ₂₁	¢	\$ ₁₂	¢	\$ ₂₂	φ	
30	0.554	-85	20.30	128	0.044	28	0.628	-121	
40	0.775	-113	20.00	113	0.040	26	0.632	-123	
50	0.758	-124	17.50	107	0.041	20	0.652	-135	
60	0.711	-132	14.60	100	0.050	20	0.570	-135	
70	0.751	-139	12.70	100	0.042	11	0.666	-145	
80	0.742	-143	11.30	95	0.043	9	0.666	-149	
90	0.724	-146	10.00	92	0.042	8	0.657	-151	
100	0.730	-149	8.97	90	0.042	6	0.663	-154	
110	0.735	-151	8.29	87	0.043	3	0.683	-156	
120	0.732	-153	7.53	84	0.042	2	0.666	-158	
130	0.734	-155	7.01	83	0.042	1	0.688	-159	
140	0.740	-156	6.57	81	0.043	0	0.701	-160	
150	0.747	-157	6.01	78	0.042	-2	0.688	-162	
160	0.748	-159	5.66	76	0.041	-4	0.715	-162	
170	0.741	-160	5.22	76	0.040	-4	0.690	-161	
180	0.746	-160	4.94	74	0.041	-4	0.719	-164	
190	0.753	-161	4.67	73	0.041	-6	0.725	-165	
200	0.756	-162	4.51	70	0.040	-7	0.729	-166	
210	0.755	-162	4.15	69	0.039	-8	0.727	-165	
220	0.759	-163	3.91	68	0.039	-8	0.724	-166	
230	0.767	-163	3.75	65	0.039	-10	0.751	-169	
240	0.769	-164	3.56	64	0.038	-12	0.733	-167	
250	0.766	-164	3.41	63	0.037	-12	0.726	-167	
260	0.767	-165	3.26	63	0.035	-10	0.725	-167	
270	0.773	-165	3.07	61	0.035	-10	0.725	-167	
280	0.777	-165	3.03	61	0.035	-11	0.753	-167	
290	0.777	-166	2.89	58	0.034	-13	0.732	-169	
300	0.782	-166	2.80	57	0.034	-11	0.744	-169	
310	0.788	-166	2.66	57	0.034	-12	0.764	-169	
320	0.794	-167	2.54	55	0.033	-12	0.760	-167	
330	0.796	-167	2.47	54	0.032	-13	0.787	-169	
340	0.795	-168	2.38	54	0.031	-13	0.753	-170	
350	0.799	-168	2.27	52	0.030	-11	0.772	-168	
360	0.804	-168	2.17	51	0.030	-11	0.782	-169	
370	0.805	-168	2.15	50	0.030	-11	0.796	-169	
380	0.807	-169	2.06	48	0.029	-12	0.782	-170	
390	0.812	-169	2.00	48	0.028	-12	0.796	-170	
400	0.818	-170	1.91	47	0.027	-10	0.784	-168	
410	0.821	-170	1.86	46	0.029	-11	0.830	-170	
420	0.821	-170	1.83	44	0.028	-11	0.823	-171	
430	0.822	-171	1.74	44	0.026	-9	0.791	-170	
440	0.826	-171	1.67	43	0.025	-7	0.788	-170	

⁷

The RF MOSFET Line 40W, 500MHz, 28V

Rev. V1

f	\$ ₁₁		s ₁₁ s ₂₁		\$ ₁₂		\$ ₂₂	
MHz	\$ ₁₁	φ	\$ ₂₁	φ	\$ ₁₂	φ	\$ ₂₂	φ
450	0.830	-171	1.68	42	0.025	-7	0.820	-170
460	0.831	-172	1.64	41	0.026	-10	0.843	-174
470	0.832	-172	1.54	41	0.025	-7	0.827	-173
480	0.835	-173	1.50	39	0.024	-3	0.836	-172
490	0.835	-173	1.43	38	0.024	1	0.835	-171
500	0.823	-174	1.43	37	0.025	3	0.849	-172
600	0.874	-176	1.12	29	0.003	-171	0.873	-176
700	0.910	-179	0.86	23	0.013	89	0.867	-177
800	0.932	179	0.74	18	0.035	61	0.904	178
900	0.966	176	0.63	12	0.029	68	0.897	179
1000	0.975	172	0.54	5	0.042	49	0.953	174

Table 1. Common Source S-Parameters (VDS = 24 V, ID = 230 mA) (continued)

The RF MOSFET Line 40W, 500MHz, 28V

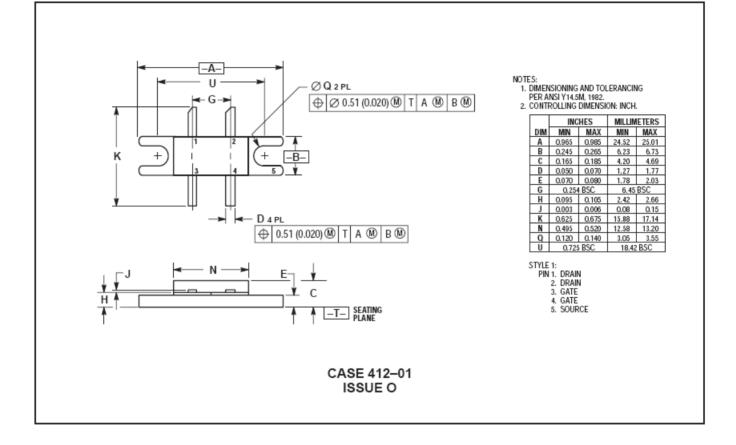
Rev. V1

Table 2. Common Source S–Parameters (V_{DS} = 28 V, I_{D} = 250 mA)									
f	S	11	S;	21	S.	12	S	22	
MHz	\$ ₁₁	φ	\$ ₂₁	φ	\$ ₁₂	φ	\$ ₂₂	φ	
30	0.601	-86	22.20	128	0.040	29	0.796	-119	
40	0.783	-112	21.20	114	0.037	27	0.616	-122	
50	0.764	-122	18.50	108	0.038	21	0.637	-133	
60	0.727	-131	15.50	101	0.045	21	0.574	-135	
70	0.759	-138	13.50	100	0.039	12	0.648	-143	
80	0.751	-142	12.10	95	0.040	9	0.649	-148	
90	0.732	-146	10.70	93	0.040	8	0.641	-150	
100	0.737	-149	9.55	90	0.040	6	0.648	-153	
110	0.741	-150	8.81	88	0.040	4	0.670	-155	
120	0.738	-153	8.01	85	0.040	3	0.654	-156	
130	0.740	-154	7.47	83	0.040	2	0.675	-157	
140	0.747	-156	7.01	82	0.040	1	0.684	-158	
150	0.754	-157	6.43	79	0.040	-2	0.669	-161	
160	0.757	-159	6.07	77	0.039	-3	0.693	-161	
170	0.749	-159	5.59	76	0.038	-3	0.670	-161	
180	0.753	-160	5.28	75	0.039	-4	0.701	-163	
190	0.759	-161	4.99	73	0.039	-5	0.712	-164	
200	0.761	-161	4.81	70	0.038	-7	0.719	-165	
210	0.759	-162	4.44	70	0.037	-6	0.713	-163	
220	0.762	-163	4.18	69	0.037	-7	0.709	-164	
230	0.771	-164	4.03	66	0.037	-9	0.733	-167	
240	0.775	-164	3.83	65	0.036	-10	0.715	-165	
250	0.774	-165	3.69	64	0.035	-10	0.713	-166	
260	0.775	-165	3.52	63	0.034	-10	0.715	-168	
270	0.780	-165	3.29	61	0.034	-10	0.712	-168	
280	0.782	-165	3.24	61	0.034	-11	0.741	-168	
290	0.781	-166	3.10	59	0.032	-12	0.722	-168	
300	0.785	-166	3.01	58	0.033	-11	0.733	-168	

The RF MOSFET Line 40W, 500MHz, 28V

Rev. V1

f	\$	\$ ₁₁		21	\$	\$ ₁₂		\$ ₂₂	
MHz	\$ ₁₁	φ	\$ ₂₁	φ	\$ ₁₂	φ	\$ ₂₂	φ	
310	0.792	-167	2.87	57	0.032	-12	0.750	-167	
320	0.798	-167	2.75	56	0.032	-12	0.739	-166	
330	0.801	-168	2.68	53	0.031	-13	0.760	-170	
340	0.800	-168	2.58	53	0.030	-14	0.727	-172	
350	0.803	-169	2.44	52	0.029	-12	0.755	-170	
360	0.807	-169	2.33	50	0.029	-12	0.772	-171	
370	0.808	-169	2.30	50	0.029	-12	0.787	-169	
380	0.809	-169	2.19	48	0.028	-13	0.768	-170	
390	0.813	-170	2.14	49	0.027	-13	0.775	-169	
400	0.820	-170	2.06	47	0.026	-11	0.765	-167	
410	0.823	-170	2.02	45	0.027	-12	0.805	-170	
420	0.823	-171	1.98	44	0.026	-13	0.794	-173	
430	0.824	-171	1.89	44	0.025	-12	0.778	-174	
440	0.828	-172	1.83	43	0.024	-11	0.785	-173	
450	0.832	-172	1.81	41	0.024	-10	0.812	-172	
460	0.833	-172	1.75	41	0.025	-13	0.838	-175	
470	0.835	-172	1.65	41	0.023	-11	0.817	-173	
480	0.840	-172	1.60	40	0.022	-10	0.818	-172	
490	0.844	-173	1.55	38	0.022	-10	0.819	-172	
500	0.845	-173	1.56	37	0.022	-10	0.833	-173	
600	0.879	-176	1.21	29	0.002	138	0.870	-176	
700	0.912	-179	0.92	23	0.017	77	0.862	-176	
800	0.935	179	0.79	18	0.039	58	0.887	179	
900	0.966	176	0.67	11	0.030	69	0.892	179	
1000	0.974	172	0.57	5	0.043	49	0.945	175	


Table 2. Common Source S-Parameters (VDS = 28 V, ID = 250 mA) (continued)

The RF MOSFET Line 40W, 500MHz, 28V

Rev. V1

