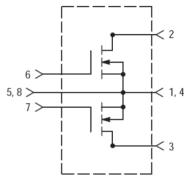

Rev. V1


Designed for broadband commercial and military applications up to 400 MHz frequency range. Primarily used as a driver or output amplifier in push–pull configurations. Can be used in manual gain control, ALC and modulation circuits.

N-Channel enhancement mode MOSFET

- Typical performance at 400 MHz, 28 V: Output power — 100 W Gain — 12 dB Efficiency — 60%
- Low thermal resistance
- Low Crss 10 pF typ. @ VDS = 28 V
- · Ruggedness tested at rated output power
- Nitride passivated die for enhanced reliability
- Excellent thermal stability; suited for Class A operation

Product Image

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	65	Vdc
Drain-Gate Voltage (R _{GS} = 1.0 MΩ)	VDGR	65	Vdc
Gate-Source Voltage	V _{GS}	±40	Vdc
Drain Current — Continuous	I _D	16	Adc
Total Device Dissipation @ T _C = 25°C (1) Derate above 25°C	PD	270 1.54	Watts W/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Temperature Range	TJ	200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.65	°C/W

⁽¹⁾ Total device dissipation rating applies only when the device is operated as an RF push-pull amplifier.

NOTE — <u>CAUTION</u> — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

1

Rev. V1

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic (1)	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•				
Drain–Source Breakdown Voltage (VGS = 0, ID = 50 mA)	V _{(BR)DSS}	65	_	_	Vdc
Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0)	IDSS	_	_	2.0	mAdc
Gate-Source Leakage Current (VGS = 20 V, VDS = 0)	IGSS	_	_	1.0	μAdc
ON CHARACTERISTICS (1)					
Gate Threshold Voltage (V _{DS} = 10 V, I _D = 50 mA)	VGS(th)	1.0	3.0	6.0	Vdc
Drain-Source On-Voltage (VGS = 10 V, ID = 3.0 A)	VDS(on)	_	_	1.4	Vdc
Forward Transconductance (VDS = 10 V, ID = 2.0 A)	9fs	1.8	2.2	_	mhos
DYNAMIC CHARACTERISTICS (1)					
Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)	C _{iss}	_	100	_	pF
Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)	C _{oss}	_	105	_	pF
Reverse Transfer Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	C _{rss}	_	10	_	pF
FUNCTIONAL CHARACTERISTICS (Figure 8) (2)			•		
Common Source Power Gain (VDD = 28 Vdc, P _{out} = 100 W, f = 400 MHz, I _{DQ} = 200 mA)	GPS	10	12	_	dB
Drain Efficiency (V _{DD} = 28 Vdc, P _{out} = 100 W, f = 400 MHz, I _{DQ} = 200 mA)	η	55	60	_	%
Electrical Ruggedness (VDD = 28 Vdc, P _{out} = 100 W, f = 400 MHz, I _{DQ} = 200 mA, Load VSWR = 30:1, All Phase Angles At Frequency of Test)	Ψ	No Degradation in Output Power Before & After Test			

⁽¹⁾ Note each transistor chip measured separately

⁽²⁾ Both transistor chips operating in push-pull amplifier

Rev. V1

TYPICAL CHARACTERISTICS

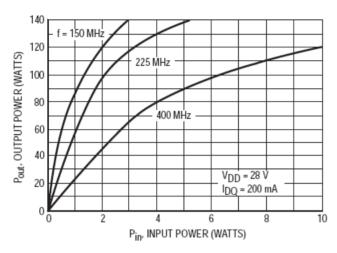


Figure 1. Output Power versus Input Power

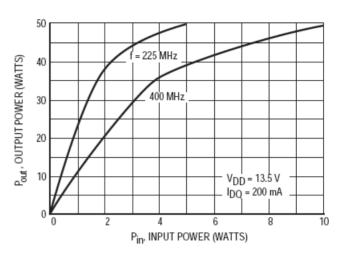


Figure 2. Output Power versus Input Power

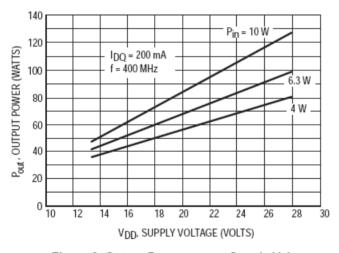


Figure 3. Output Power versus Supply Voltage

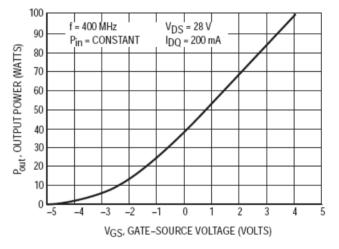


Figure 4. Output Power versus Gate Voltage

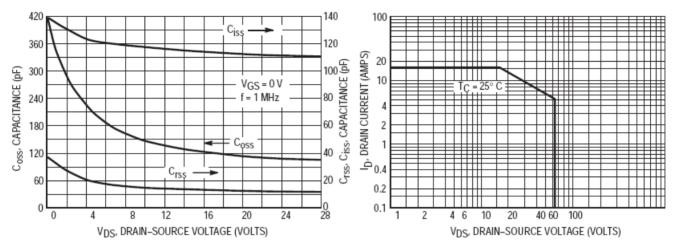
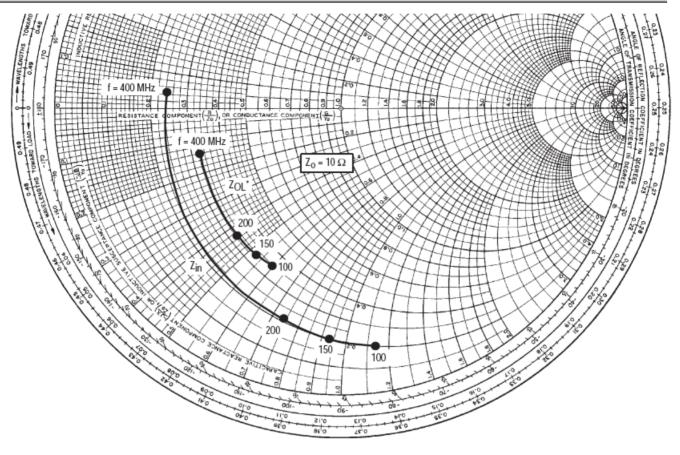
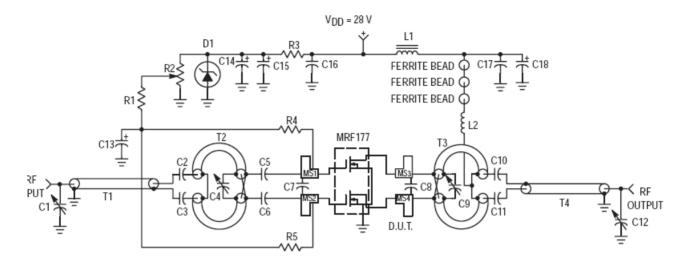



Figure 5. Capacitance versus Drain Voltage

Figure 6. DC Safe Operating Area

Rev. V1


NOTE: Input and Output Impedance values given are measured gate—to—gate and drain—to—drain respectively.

V _{DD} = 28 V I _{DQ} = 200 mA P _{out} = 100 W								
f (MHz)	Z _{in} Ohms	Z _{OL} * Ohms						
100	2.0 – j11.5	3.5 – j6						
150	2.05 – j9.45	3.35 – j5.34						
200	2.1 – j7.5	3.3 – j4.4						
400	2.35 + j0.4	3.2 – j1.38						

Z_{OL}*: Conjugate of optimum load impedance into which the device operates at a given output power, voltage, current and frequency.

Figure 7. Impedance or Admittance Coordinates

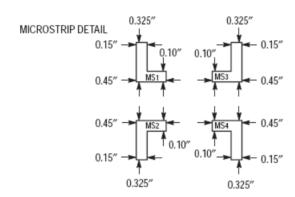


Figure 8. Test Circuit Electrical Schematic

Rev. V1

NOTE: S-Parameter data represents measurements taken from one chip only.

Table 1. Common Source S-Parameters ($V_{DS} = 24 \text{ V}, I_{D} = 0.4 \text{ A}$)

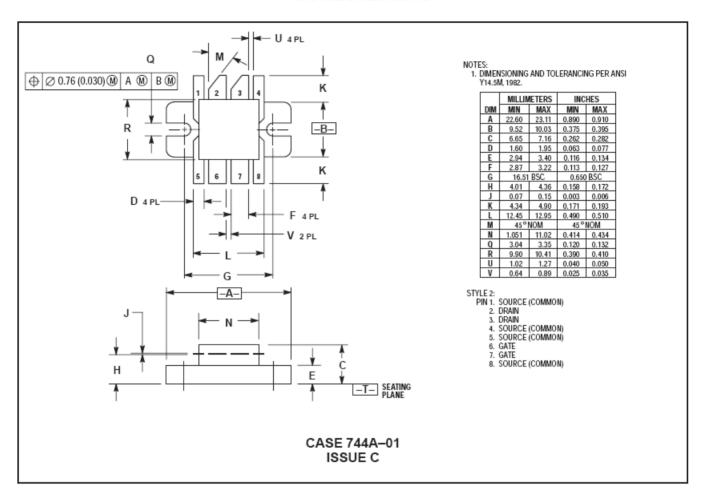
f	s	11	S	21	S	s ₁₂		22
MHz	S ₁₁	ф	\$ ₂₁	ф	S ₁₂	ф	S ₂₂	ф
30	0.797	-154	12.40	88	0.029	2	0.756	-159
40	0.739	-161	9.06	89	0.027	8	0.702	-165
50	0.749	-164	6.84	85	0.026	7	0.707	-168
60	0.770	-163	6.06	80	0.027	3	0.754	-168
70	0.790	-164	5.40	73	0.027	-1	0.776	-168
80	0.800	-166	4.60	70	0.026	-1	0.777	-168
90	0.808	-167	3.94	67	0.025	-1	0.795	-168
100	0.816	-168	3.47	64	0.024	-1	0.809	-169
110	0.816	-169	3.14	62	0.023	1	0.809	-169
120	0.815	-170	2.76	61	0.022	6	0.794	-169
130	0.821	-171	2.45	59	0.021	12	0.799	-170
140	0.828	-171	2.27	56	0.022	18	0.806	-169
150	0.836	-171	2.10	53	0.028	25	0.805	-169
160	0.861	-172	1.96	51	0.032	-6	0.823	-168
170	0.863	-173	1.77	49	0.020	-4	0.836	-166
180	0.869	-173	1.63	46	0.018	5	0.881	-169
190	0.872	-174	1.52	44	0.017	14	0.894	-169
200	0.873	-175	1.41	43	0.017	25	0.888	-171
210	0.877	-176	1.28	42	0.018	36	0.877	-171
220	0.880	-176	1.18	41	0.019	46	0.868	-171
230	0.881	-177	1.15	38	0.024	51	0.926	-173
240	0.877	-178	1.09	35	0.031	56	0.893	-174
250	0.857	-180	1.04	33	0.049	55	0.903	-173
260	0.758	-178	0.95	31	0.090	24	0.903	-172
270	0.862	-171	0.87	31	0.056	-33	0.933	-173
280	0.902	-174	0.85	32	0.027	-39	0.949	-174
290	0.913	-176	0.77	30	0.017	-28	0.891	-175
300	0.919	-177	0.72	30	0.012	-8	0.894	-175
310	0.922	-178	0.71	28	0.012	11	0.913	-175
320	0.925	-178	0.67	26	0.012	28	0.896	-175
330	0.927	-179	0.64	24	0.012	40	0.929	-176
340	0.929	-179	0.62	24	0.013	46	0.925	-179
350	0.931	-180	0.58	24	0.015	52	0.942	-174
360	0.934	180	0.55	24	0.017	55	0.944	-176
370	0.937	179	0.52	23	0.019	61	0.944	-176
380	0.940	179	0.49	21	0.020	68	0.919	-175
390	0.941	178	0.45	22	0.020	69	0.938	-177
400	0.942	178	0.46	18	0.021	73	0.920	-173
410	0.941	177	0.45	19	0.023	67	0.961	-178
420	0.943	177	0.44	18	0.026	67	0.945	-178
430	0.945	176	0.41	16	0.029	70	0.959	-179

Table 1. Common Source S-Parameters (VDS = 24 V, ID = 0.4 A) (continued)

f	\$ ₁₁		S	s ₂₁		s ₁₂		s ₁₂ s ₂₂		22
MHz	S ₁₁	ф	\$ ₂₁	ф	S ₁₂	ф	\$ ₂₂	ф		
440	0.947	176	0.38	16	0.029	75	0.962	-179		
450	0.949	176	0.38	19	0.030	78	0.984	-178		
460	0.952	175	0.36	17	0.029	72	0.987	178		
470	0.953	175	0.34	18	0.030	70	0.976	179		
480	0.952	174	0.34	14	0.035	69	0.968	179		
490	0.952	174	0.34	14	0.039	72	0.987	178		
500	0.952	174	0.32	13	0.040	76	1.002	179		
600	0.938	170	0.22	9	0.047	117	1.013	172		
700	0.962	166	0.19	13	0.060	73	0.993	171		
800	0.953	162	0.17	18	0.097	68	0.981	171		
900	0.953	159	0.14	21	0.097	65	0.949	166		
1000	0.952	156	0.14	27	0.110	68	0.982	163		

Table 2. Common Source S-Parameters (V_{DS} = 28 V, I_{D} = 0.435 A)

f	S	11	S	21	S	12	S	22
MHz	S ₁₁	ф	S ₂₁	ф	S ₁₂	ф	S ₂₂	ф
30	0.803	-153	13.50	89	0.028	3	0.746	-157
40	0.742	-160	9.90	90	0.026	9	0.686	-164
50	0.752	-163	7.48	85	0.025	8	0.692	-168
60	0.773	-163	6.62	80	0.026	4	0.739	-167
70	0.794	-164	5.91	74	0.026	1	0.761	-167
80	0.803	-166	5.04	70	0.025	1	0.763	-167
90	0.812	-167	4.32	68	0.024	1	0.783	-167
100	0.819	-168	3.81	64	0.022	1	0.798	-168
110	0.818	-169	3.44	62	0.022	3	0.797	-168
120	0.817	-170	3.03	61	0.021	9	0.779	-168
130	0.823	-171	2.68	59	0.020	15	0.784	-170
140	0.830	-171	2.49	57	0.021	21	0.793	-169
150	0.838	-171	2.30	53	0.027	27	0.792	-169
160	0.864	-172	2.16	52	0.030	-5	0.816	-167
170	0.865	-173	1.95	49	0.019	-2	0.827	-166
180	0.870	-173	1.79	46	0.017	8	0.869	-168
190	0.873	-174	1.67	44	0.016	18	0.882	-168
200	0.874	-175	1.55	43	0.017	27	0.878	-171
210	0.878	-176	1.40	42	0.017	37	0.866	-171
220	0.881	-176	1.29	41	0.019	47	0.858	-171
230	0.881	-177	1.25	38	0.025	53	0.918	-172
240	0.877	-178	1.20	35	0.031	59	0.882	-173
250	0.856	-180	1.13	33	0.048	57	0.893	-173
260	0.760	-178	1.03	31	0.088	24	0.899	-172
270	0.864	-171	0.96	31	0.056	-33	0.931	-172
280	0.903	-174	0.93	32	0.027	-38	0.946	-173
290	0.914	-176	0.85	30	0.015	-25	0.885	-174


Table 2. Common Source S-Parameters (VDS = 28 V, ID = 0.435 A) (continued)

f	f S ₁₁		f S ₁₁		S	s ₂₁ s		s ₁₂		s ₂₂	
MHz	S ₁₁	ф	\$ ₂₁	ф	S ₁₂	ф	S ₂₂	ф			
300	0.919	-177	0.79	30	0.010	-7	0.881	-175			
310	0.922	-178	0.78	28	0.009	6	0.903	-175			
320	0.925	-178	0.75	26	0.010	18	0.900	-175			
330	0.927	-179	0.70	24	0.012	31	0.925	-176			
340	0.929	-180	0.68	24	0.014	45	0.920	-178			
350	0.931	180	0.63	25	0.015	63	0.932	-173			
360	0.934	179	0.61	23	0.014	70	0.931	-176			
370	0.936	179	0.57	23	0.013	68	0.929	-176			
380	0.939	178	0.53	21	0.015	61	0.909	-176			
390	0.941	178	0.50	22	0.018	61	0.940	-178			
400	0.941	178	0.50	18	0.022	74	0.917	-173			
410	0.940	177	0.49	19	0.024	80	0.955	-178			
420	0.941	177	0.48	18	0.022	83	0.942	-178			
430	0.943	176	0.46	16	0.020	77	0.957	-179			
440	0.946	176	0.42	16	0.022	69	0.960	-178			
450	0.948	175	0.41	18	0.029	71	0.982	-177			
460	0.951	175	0.39	17	0.032	76	0.983	178			
470	0.951	175	0.37	17	0.031	88	0.968	179			
480	0.950	174	0.37	13	0.027	93	0.965	179			
490	0.950	174	0.37	13	0.025	81	0.994	179			
500	0.950	173	0.36	12	0.031	69	1.012	180			
600	0.936	170	0.24	7	0.063	127	1.005	171			
700	0.960	166	0.20	11	0.064	72	0.989	171			
800	0.953	162	0.17	15	0.092	66	1.017	169			
900	0.954	159	0.15	19	0.092	65	0.952	167			
1000	0.952	156	0.15	24	0.082	56	0.988	162			

Rev. V1

PACKAGE DIMENSIONS

