

Rev. V1

The RF Line NPN Silicon Power Transistor 250 W, 30 MHz, 50 V

Description

Designed primarily for high voltage applications as a high power linear amplifiers from 2 to 30 MHz. Ideal for marine and base station equipment.

- Specified 50 V, 30 MHz characteristics Output power = 250 W Minimum gain = 12 dB Efficiency = 45%
- Intermodulation distortion @ 250 W (PEP) - IMD = -30 dB (max.)
- 100% tested for load mismatch at all phase angles with 3:1 VSWR

Product Image

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	50	Vdc
Collector-Base Voltage	V _{CBO}	100	Vdc
Emitter-Base Voltage	V_{EBO}	4	Vdc
Collector Current - Continuous	Ι _C	16	Adc
Withstand Current - 10 s	-	20	Adc
Total Device Dissipation @ Tc =25°C (1) Derate above 25°C	P _D	290 1.67	Watts W/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max.	Unit
Thermal Resistance, Junction to Case	R_{eJC}	0.6	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min.	Тур.	Max.	Unit	
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage (I_c = 200 mAdc, I_B = 0)	V _{(BR)CEO}	50	_	_	Vdc	
Collector-Emitter Breakdown Voltage ($I_C = 100 \text{ mAdc}, V_{BE} = 0$)	V _{(BR)CES}	100	—	—	Vdc	
Collector-Base Breakdown Voltage ($I_c = 100 \text{ mAdc}, I_E = 0$)	V _{(BR)CBO}	100	—	—	Vdc	
Emitter-Base Breakdown Voltage ($I_E = 10 \text{ mAdc}, I_C = 0$)	V _{(BR)EBO}	4	_	_	Vdc	

Note:

1. PD is a measurement reflecting short term maximum condition. See SOAR curve for operating conditions.

(continued)

¹

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev. V1

ELECTRICAL CHARACTERISTICS - *continued* (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min.	Тур.	Max.	Unit	
ON CHARACTERISTICS						
DC Current Gain ($I_C = 5.0$ Adc, $V_{CE} = 10$ Vdc)	h _{FE}	25	_	50	_	
DYNAMIC CHARACTERISTICS						
Output Capacitance (V_{CB} = 50 Vdc, I _E = 0, f = 1.0 MHz)	C _{ob}	_	350	450	pF	
FUNCTIONAL TESTS						
Common-Emitter Amplifier Power Gain (V_{CC} = 50 Vdc, P _{out} = 250 W CW, f = 30 MHz, I _{CQ} =250 mA)	G _{PE}	12	14	—	dB	
Collector Efficiency (V_{CC} = 50 Vdc, P_{out} = 250 W, f = 30 MHz, I_{CQ} = 250 mA)	η	_	45 65	—	% (PEP) % (CW)	
Intermodulation Distortion (2) (V_{CE} = 50 Vdc, P_{out} = 250 W (PEP), I_{CQ} = 250mA, f = 30 MHz)	IMD	_	-33	-30	dB	
Electrical Ruggedness (V _{CC} = 50 Vdc, P _{out} = 250 W CW, f =30 MHz, VSWR 3:1 at all Phases Angles)	Ψ	No Degradation in Output Power				

Note:

2. To Mil-Std-1311 Version A, Test Method 2204, Two Tone, Reference Each Tone

Rev. V1

Figure 1. 30 MHz Test Circuit Schematic

3

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev. V1

60

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Supply Voltage

Figure 5. RF SOAR (Class AB) Pout versus Output VSWR

4

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev. V1

5

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

Rev. V1

The RF Line NPN Silicon Power Transistor 250 W, 30 MHz, 50 V

versus Frequency

Figure 9. Series Equivalent Impedance

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev. V1

Unless otherwise noted, tolerances are inches $\pm .005$ " [millimeters ± 0.13 mm]