

MSC080SMA120J Silicon Carbide N-Channel Power MOSFET

Product Overview

The silicon carbide (SiC) power MOSFET product line from Microsemi increases the performance over silicon MOSFET and silicon IGBT solutions while lowering the total cost of ownership for high-voltage applications. The MSC080SMA120J device is a 1200 V, 80 m Ω SiC MOSFET in an SOT-227 package.

Features

The following are key features of the MSC080SMA120J device:

- Low capacitances and low gate charge
- Fast switching speed due to low internal gate resistance (ESR)
- Stable operation at high junction temperature, T_{J(max)} = 175 °C
- Fast and reliable body diode
- Superior avalanche ruggedness
- RoHS compliant
- Isolated voltage to 2500 V

Benefits

The following are benefits of the MSC080SMA120J device:

- High efficiency to enable lighter, more compact system
- Simple to drive and easy to parallel
- Improved thermal capabilities and lower switching losses
- Eliminates the need for external freewheeling diode
- Lower system cost of ownership

Applications

The MSC080SMA120J device is designed for the following applications:

- PV inverter, converter, and industrial motor drives
- Smart grid transmission and distribution
- Induction heating and welding
- H/EV powertrain and EV charger
- Power supply and distribution

Device Specifications

This section shows the device specifications for the MSC080SMA120J device.

Absolute Maximum Ratings

The following table shows the absolute maximum ratings of the MSC080SMA120J device.

Table 1 • Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
V _{DSS}	Drain source voltage	1200	V
I _D	Continuous drain current at $T_c = 25 \text{ °C}$		A
	Continuous drain current at T $_{\rm C}$ = 100 °C	26	
I _{DM}	Pulsed drain current ¹	91	
V _{GS}	Gate-source voltage	23 to -10	V
P _D	Total power dissipation at T_{C} = 25 °C	200	W
	Linear derating factor	1.33	W/°C

Note:

1. Repetitive rating: pulse width and case temperature limited by maximum junction temperature.

The following table shows the thermal and mechanical characteristics of the MSC080SMA120B device. **Table 2 • Thermal and Mechanical Characteristics**

Symbol	Characteristic	Min	Тур	Max	Unit
R _{θJC}	Junction-to-case thermal resistance		0.50	0.75	°C/W
Tj	Operating junction temperature	-55		175	°C
T _{STG}	Storage temperature	-55		150	
TL	Soldering temperature for 10 seconds (1.6 mm from case)			260	
VISOLATION	R _{MS} voltage (50 Hz–60 Hz sinusoidal waveform from terminals to mounting base for 1 minute)		2500		V
	Mounting torque, M4 screw			10	lbf-in
				1.1	N-m
Wt	Package weight		1.03		OZ

Symbol	Characteristic	Min	Тур	Max	Unit
			29.2		g

Electrical Performance

The following table shows the static characteristics of the MSC080SMA120J device. $T_J = 25$ °C unless otherwise specified.

Table 3 • Static Characteristics

Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit
V _{(BR)DSS}	Drain-source break- down voltage	V_{GS} = 0 V, I_{D} = 100 μA	1200			V
R _{DS(on)}	Drain-source on re- sistance ¹	V _{GS} = 20 V, I _D = 15 A		80	100	mΩ
V _{GS(th)}	Gate-source threshold voltage	$V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$	1.8	2.8		V
$\Delta V_{GS(th)} / \Delta T_J$	Threshold voltage coefficient	$V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$		-4.5		mV/°C
I _{DSS}	Zero gate voltage drain current	V _{DS} = 1200 V, T _J = 25 °C, V _{GS} = 0 V			100	μΑ
		V_{DS} = 1200 V, T _J = 125 °C, V _{GS} = 0 V			500	-
I _{GSS}	Gate-source leak- age current	V _{GS} = 20 V			100	nA
		V _{GS} = -10 V			100	

Note:

1. Pulse test: pulse width < 380μ s, duty cycle < 2%.

The following table shows the dynamic characteristics of the MSC080SMA120J device. T_J = 25 $^{\circ}$ C unless otherwise specified.

Table 4 • Dynamic Characteristics

Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit
C _{iss}	Input capacitance	V _{GS} = 0 V, V _{DD} = 1000 V V _{AC} = 25 mV, f = 1 MHz		838		pF
C _{rss}	Reverse transfer capacitance			9		
C _{oss}	Output capacitance			84		
Qg	Total gate charge	V _{GS} = -5 V/20 V, V _{DD} = 800 V I _D = 15 A		64		nC

Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit
Q _{gs}	Gate-source charge			12		
Q _{gd}	Gate-drain charge			19		
t _{d(on)}	Turn-on delay time	$V_{DD} = 800 \text{ V}, V_{GS} = -5 \text{ V}/20 \text{ V}$ $I_D = 15 \text{ A}, R_G (ext) = 4 \Omega^1$ Freewheeling diode = MSC080SMA120J ($V_{GS} = -5\text{V}$)		5		ns
t _r	Current rise time			4		
t _{d(off)}	Turn-off delay time			21		
t _f	Current fall time			15		
E _{on}	Turn-on switching energy ²			310		μ
E _{off}	Turn-off switching energy			27		
t _{d(on)}	Turn-on delay time	$V_{DD} = 800 \text{ V}, \text{ V}_{GS} = -5 \text{ V}/20 \text{ V}$		4		ns
t _r	Current rise time	$I_D = 30$ A, $R_{G (ext)} = 4 \Omega^1$ Freewheeling diode = MSC080SMA120J ($V_{GS} = -5V$)		4		
t _{d(off)}	Turn-off delay time	(165 01)		24		
t _f	Current fall time			19		
E _{on}	Turn-on switching energy ²			703		μ
E _{off}	Turn-off switching energy			71		-
ESR	Equivalent series resistance	f = 1 MHz, 25 mV, drain short		1.9		Ω
SCWT	Short circuit with- stand time	V_{DS} = 960 V, V_{GS} = 20 V, T_{C} = 25 °C		3		μS
E _{AS}	Avalanche energy, single pulse	V_{DS} = 150 V, I _D = 15 A, T _C = 25 °C		1000		mJ

Notes:

- 1. $\rm R_{G}$ is total gate resistance excluding internal gate driver impedance.
- 2. E_{on} includes energy of the freewheeling diode.

The following table shows the body diode characteristics of the MSC080SMA120J device. $T_J = 25$ °C unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{SD}	Diode forward voltage	I _{SD} = 15 A, V _{GS} = 0 V		4.0		v
V _{SD}	Diode forward voltage	I _{SD} = 15 A, V _{GS} = -5 V		4.2		v
t _{rr}	Reverse recovery time	I _{SD} = 15 A, V _{GS} = -5 V V _{DD} = 800 V, dl/dt = -1000 A/μs		34		ns
Q _{rr}	Reverse recovery charge	ν _{DD} - 300 ν, αι/αι - 1000 Α/μ3		200		nC
I _{rrm}	Reverse recovery current			6.5		А

Table 5 • Body Diode Characteristics

Typical Performance Curves

This section shows the typical performance curves for the MSC080SMA120J device.

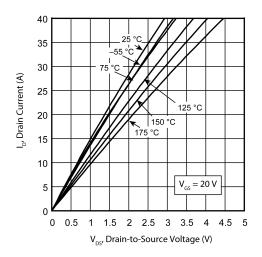
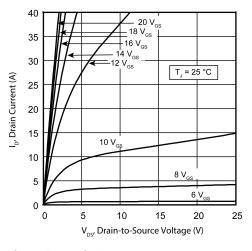



Figure 1 • Drain Current vs. V_{DS}

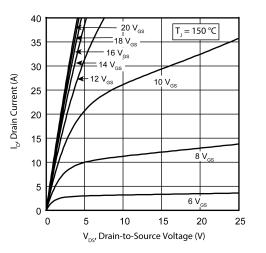
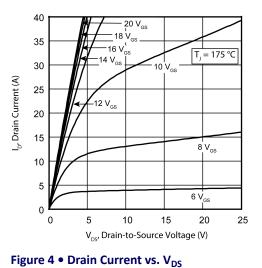
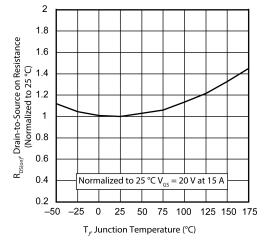
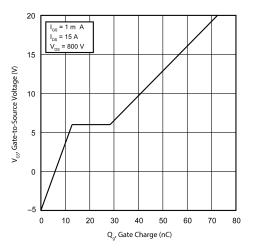





Figure 3 • Drain Current vs. V_{DS}

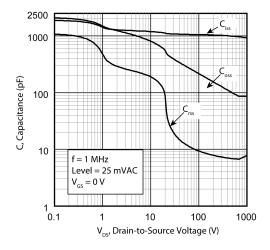


Figure 7 • Capacitance vs. V_{DS}

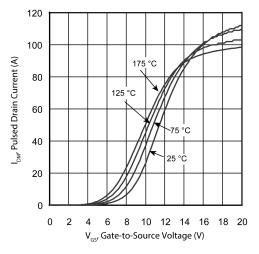
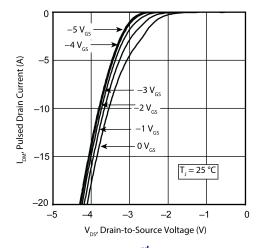
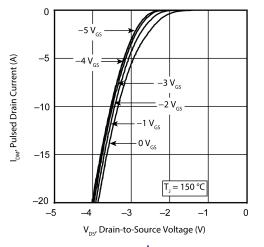




Figure 8 • IDM vs. Gate-to-Source Voltage



Figure 11 • VGS(th) vs. Junction Temp.

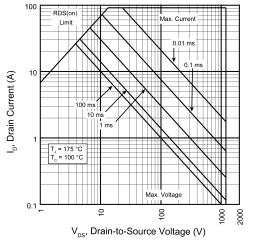


Figure 12 • Forward Safe Operating Area

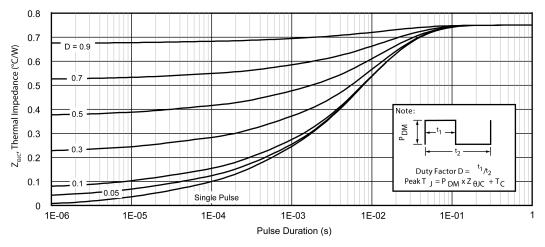


Figure 13 • Maximum Transient Thermal Impedance

Package Specification

This section shows the package specification for the MSC080SMA120J device.

Package Outline Drawing

The following figure illustrates the SOT-227 package drawing for the MSC080SMA120J device. The dimensions in the figure below are in millimeters and (inches).

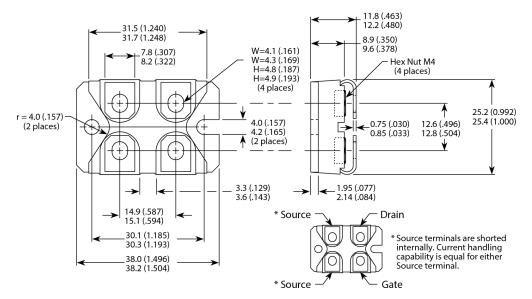


Figure 14 • Package Outline Drawing