

Three phase full Bridge

with Trench MOSFETs in DCB-isolated high-current package

= 75 V V_{DSS} = 180 A $R_{DSon typ.} = 2.2 \text{ m}\Omega$

Part number MTC120WX75GD

Features / Advantages:

- MOSFETs in trench technology:
 - low $R_{\mbox{\scriptsize DSon}}$
 - optimized intrinsic reverse diode
- Package:
 - high level of integration
 - high current capability
 - aux. terminals for MOSFET control
 - terminals for soldering or welding connections
 - isolated DCB ceramic base plate with optimized heat transfer
- · Space and weight savings

Applications:

- AC drives
- · in automobiles
 - electric power steering
 - starter generator
- · in industrial vehicles
 - propulsion drives
 - fork lift drives
- in battery supplied equipment

Package: ISOPLUS-DIL®

- · High level of integration
- · RoHS compliant
- · High current capability
- Aux. Terminals for MOSFET control
- · Terminals for soldering or welding connections
- · Space and weight savings

Terms & Conditions of usage

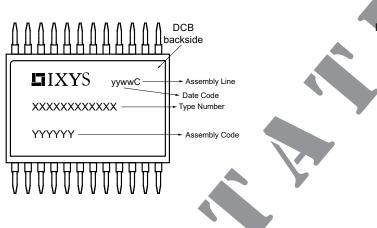
The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office.

Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend - to perform joint risk and quality assessments;

- the conclusion of quality agreements;
 to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, test conditions and dimensions.


20170529

MOSFET	·s			Ratir	ngs	
Symbol	Definitions	Conditions	min.	typ.	max.	Unit
V _{DSS}	drain source breakdown voltage	$T_{VJ} = 25^{\circ} \text{C to } 150^{\circ}$	C		75	V
\mathbf{V}_{GS} \mathbf{V}_{GSM}	gate source voltage max. transient gate source voltage				±15 ±20	V V
I _{D25} I _{D80} I _{D100}	continuous drain current	$T_{c} = 25^{\circ}$ $T_{c} = 80^{\circ}$ $T_{c} = 100^{\circ}$	С		180 144 128	A A A
R _{DS(on)} 1)	static drain source on resistance	on chip level at $T_{VJ} = 25^{\circ}$ $I_D = 100 \text{ A; } V_{GS} = 10 \text{ V}$ $T_{VJ} = 125^{\circ}$		2.2 3.7	3.1	mΩ
V _{GS(th)}	gate threshold voltage	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}$ $T_{VJ} = 25^{\circ}$	C 2.0		4.0	V
I _{DSS}	drain source leakage current	$V_{DS} = V_{DSS}; V_{GS} = 0 V$ $T_{VJ} = 25^{\circ}$ $T_{VJ} = 125^{\circ}$		50	1	μ Α μ Α
I_{GSS}	gate source leakage current	$V_{GS} = \pm 20 \text{ V}; V_{DS} = 0 \text{ V}$			500	nA
R_{G}	gate resistance	on chip level				Ω
C _{iss} C _{oss} C _{rss}	input capacitance output capacitance reverse transfer capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ Mhz}$		10.5 1.17 125		nF nF pF
$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	total gate charge gate source charge gate drain (Miller) charge	$V_{GS} = 10 \text{ V}; V_{DS} = 28 \text{ V}; I_D = 100 \text{ A}$		178 53 41		nC nC nC
t _{d(on)} t _r t _{d(off)} t _f E _{on} E	turn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse turn-off energy per pulse turn-off reverse recovery losses	inductive load $T_{VJ}=125^{\circ}$ - $V_{GS}=10$ V; $V_{DS}=24$ V $I_{D}=100$ A; $R_{G}=39$ Ω	С			ns ns ns ns mJ
E _{rec(off)}	thermal resistance junction to case				0.7	mJ K/W
R _{thJC}	thermal resistance junction to heatsink	with heat transfer paste (IXYS test setup)		1.0	0.7	K/W
* *thJH	thermal resistance function to neatonine	¹⁾ $V_{DS} = I_{D} \cdot (R_{DS(on)} + 2 \cdot R_{Pin \text{ to Chip}})$		1.0		1000
Source-E	Orain Diode					1 1 1 1
	forward current	$V_{GS} = 0 \text{ V}$ $T_{C} = 25^{\circ}$ $T_{C} = 80^{\circ}$ $T_{C} = 100^{\circ}$	С		180 134 106	A A A
V_{SD}	source drain voltage	$I_F = 100 \text{ A}; V_{GS} = 0 \text{ V}$ $T_{VJ} = 25^{\circ}$		0.9	1.2	V
Q _{RM} I _{RM} t _{rr}	reverse recovery charge max. reverse recovery current reverse recovery time	$V_R = 24 \text{ V}; I_F = 100 \text{ A}$ $di/dt = 800 \text{ A}/\mu\text{s}$ $T_{VJ} = 125^\circ$				μC A ns

Package	ISOPLUS-DIL®				Ratir	ngs	
Symbol	Definitions	Conditions		min.	typ.	max.	Unit
I _{RMS}	RMS current	(L1+L3+, L1 may be additiona (PCB tracks)	per pin in main current paths (L1+L3+, L1L3-, L1L3) may be additionally limited by external connections (PCB tracks) 2 pins for output L1, L2, L3			75	A
T _{stg}	storage temperature			-55		125	°C
T _{VJM}	virtual junction temperature			-55		175	°C
Weight					25		g
F _c	mounting force with clip			50		250	N
V _{ISOL}	isolation voltage	t = 1 second	50/60 Hz PMC I 1 21	1200			V
		t = 1 minute	50/60 Hz, RMS, I _{ISOL} ≤ 1 mA	1000			V
R _{pin-chip}	resistance terminal to chip	$V_{DS} = I_{D} \cdot (R_{DS(on)})$	$V_{DS} = I_{D} \cdot (R_{DS(on)} + 2 \cdot R_{pin \text{ to chip}})$		0.5		mΩ
C _P	coupling capacity	between shorted pins and back side metallization			160		pF

Part number

M = Module
T = Trench MOSFET
C = Trench 2nd Generation
120 = Current Rating [A]
WX = 6-Pack with separated Phase Legs
75 = Reverse Voltage [V]
GD = ISOPLUS-DIL

Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	MTC120WX75GD-SMD	MTC120WX75GD	Tube	13	517115