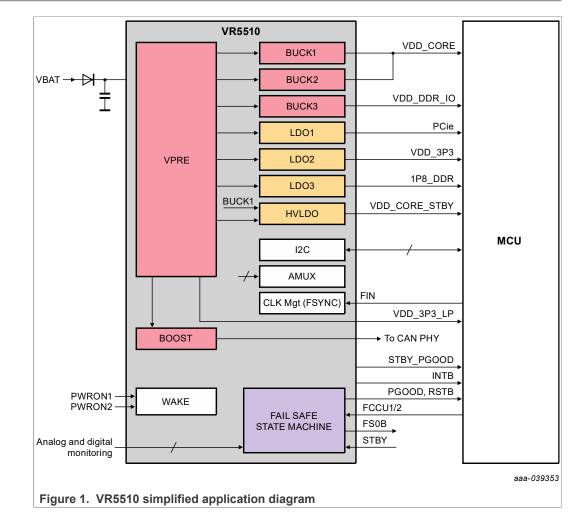
Product data sheet

1 General Description


The VR5510 is an automotive multi-output power management IC that focuses on Gateway, In-Vehicle Networks, Domain controllers, Telematics and V2X Communications. The device includes multiple high-efficiency switch modes and linear voltage regulators. It offers external frequency synchronization on inputs and outputs for optimized system EMC performance.

The VR5510 includes enhanced safety features with fail-safe outputs. The device covers ASIL B and ASIL D safety integrity levels. It complies with the ISO 26262 standard and is qualified in accordance with AEC-Q100 rev H (Grade1, MSL3). The VR5510 can be fully utilized in safety-oriented system partitioning and can also be configured to operate as a nonsafety QM-version part.

The VR5510 is available in several versions that support a variety of safety applications and offer numerous choices with respect to the number of output rails, output voltage settings, operating frequencies, and power-up sequencing.

Multi-Output PMIC with SMPS and LDO

2 Simplified Application Diagram

3 Features and Benefits

- 60 VDC maximum input voltage
- VPRE synchronous buck controller with external MOSFETs; Configurable output voltage, switching frequency, and current capability up to 10 A
- Low-voltage integrated synchronous BUCK1 and BUCK2 converters dedicated to MCU core supply with SVS/DVS capability; Configurable output voltage and current capability up to 3.6 A peak; Dual-phase operation to extend the current capability up to 7.2 A peak
- Low-voltage integrated synchronous BUCK3 converter; Configurable output voltage and current capability up to 3.6 A peak
- BOOST converter with integrated low-side switch; Configurable output voltage and input current capability up to 2.25 A peak
- 3x linear voltage regulators (LDOx) for MCU IOs, DDR and ADC supplies; Configurable output voltage and current capability up to 400 mA
- High-voltage linear regulator (HVLDO) with current capability up to 10 mA in LDO mode and 100 mA in Switch Mode

Multi-Output PMIC with SMPS and LDO

- EMC optimization techniques, including SMPS frequency synchronization, spread spectrum, slew rate control, manual frequency tuning
- Low-power standby mode with very low quiescent current (35 μA with VPRE and HVLDO ON)
- 2x input pins for wake-up detection and battery voltage sense
- Device control via I²C interface with CRC (up to 3.4 MHz)
- Dual device operation possible via dedicated synchronization pin
- Scalable portfolio from QM to ASIL B to ASIL D with Independent Monitoring Circuitry, dedicated interface for MCU monitoring, simple and challenger watchdog function, Power good, Reset and Interrupt, Built-in Self-Test, Fail-safe output
- Configuration by OTP programming; Prototype enablement to support custom setting during project development in engineering mode

4 Applications

- Gateway
- In-Vehicle Networks
- Domain controllers
- Telematics
- V2X Communications

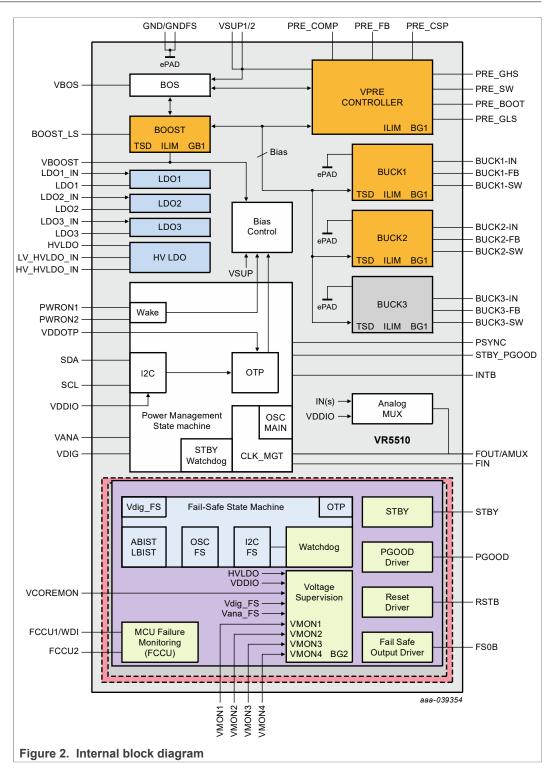
5 Ordering Information

<u>Table 1</u> shows the VR5510 part numbers available for purchase and highlights the key features associated with each part.

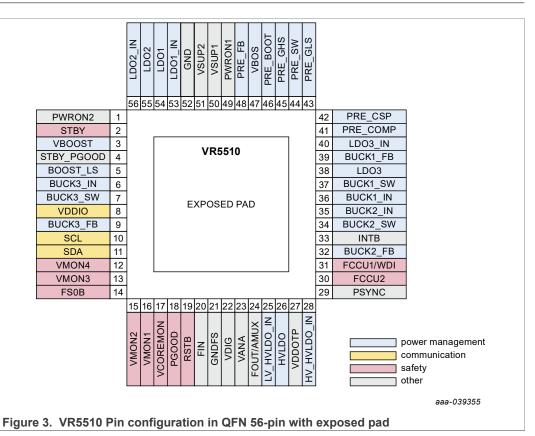
Family	Part Number ^{[1][2][3]}	Processor/ memory	Reference design	Safety Level	Auto / Indus	OTP ID
	MVR5510AMDA0ES	VR5510AMDA0ES Nonprogrammed		ASIL D	Auto ^[4]	NA
ſ	MVR5510AMBA0ES	IVR5510AMBA0ES Nonprogrammed		ASIL B	Auto	NA
	MVR5510AMMA0ES	Nonprogrammed		QM	Auto	NA
	MVR5510AVMA0EP	Nonprogrammed		QM	Indus ^[4]	NA
VR5510	MVR5510AMDA4ES	S32G / LPDDR4	S32G-V NP-RDB			http://www.nxp.com/ MVR5510AMDA4ES-OTP-Report
	MVR5510AMBA4ES	S32G / LPDDR4	S32G-V NP-RDB	ASIL B	Auto	http://www.nxp.com/ MVR5510AMBA4ES-OTP-Report
	MVR5510AMMA4ES	S32G / LPDDR4				http://www.nxp.com/ MVR5510AMMA4ES-OTP-Report
-	MVR5510AVMA4EP	S32G / LPDDR4		QM	Indus	http://www.nxp.com/ MVR5510AVMA4EP-OTP-Report
-	MVR5510AMDAHES	S32G / LPDDR4	S32G-VN P-RDB2	ASIL D	Auto	http://www.nxp.com/ MVR5510AMDAHES-OTP-Report
_	MVR5510AMBAHES	S32G / LPDDR4	S32G-VN P-RDB2			http://www.nxp.com/ MVR5510AMBAHES-OTP-Report
	MVR5510AMMAHES	S32G / LPDDR4		QM	Auto	http://www.nxp.com/ MVR5510AMMAHES-OTP-Report
-	MVR5510AVMAHEP	S32G / LPDDR4		QM	Indus	http://www.nxp.com/ MVR5510AVMAHEP-OTP-Report

Table 1. Orderable parts

Table I.								
Family	Part Number ^{[1][2][3]}	Processor/ memory	Reference design	Safety Level	Auto / Indus	OTP ID		
	MVR5510AMDA6ES	S32G / DDR3L		ASIL D	Auto	http://www.nxp.com/ MVR5510AMDA6ES-OTP-Report		
	MVR5510AMBA6ES	S32G / DDR3L		ASIL B	Auto	http://www.nxp.com/ MVR5510AMBA6ES-OTP-Report		
	MVR5510AMMA6ES	S32G / DDR3L		QM	Auto	http://www.nxp.com/ MVR5510AMMA6ES-OTP-Report		
	MVR5510AVMA6EP	S32G / DDR3L		QM	Indus	http://www.nxp.com/ MVR5510AVMA6EP-OTP-Report		


Table 1. Orderable parts...continued

Part number delivery suffix: add R2 for tape & reel P are Prerelease parts, M are Production parts 8x8 56-pin QFN-EP [1] [2] [3] [4]


Automotive package available as wettable flank; Industrial package not available as wettable flank

Multi-Output PMIC with SMPS and LDO

6 Internal Block Diagram

7 Pinout Information

7.1 Pin description

Pin	Name	Туре	Connection if not used	Description
1	PWRON2	A_IN	External pull down to GND	Power enable input 2
2	STBY	D_IN	Open	Standby pin
3	VBOOST	A_IN	Refer to <u>Section 11 "Low</u> Voltage Boost: VBOOST"	Boost voltage feedback
4	STBY_PGOOD	D_OUT	Open	Standby PGOOD Pin output dedicated to S32G
5	BOOST_LS	P_IN	Refer to <u>Section 11 "Low</u> Voltage Boost: VBOOST"	Boost Low Side Drain of internal MOSFET
6	BUCK3_IN	P_IN	Open	Low Voltage Buck3 input voltage
7	BUCK3_SW	P_OUT	Open	Low Voltage Buck3 switching node
8	VDDIO	A_IN	Connection mandatory	Input supply for the digital interfaces (I ² C, Interrupt, FIN and FOUT), 1.8 V or 3.3 V
9	BUCK3_FB	A_IN	Open	Low Voltage Buck3 voltage feedback
10	SCL	D_IN	External pull down to GND	I ² C Bus. Clock input

Multi-Output PMIC with SMPS and LDO

Table 2. V	Table 2. VR5510 pin descriptionscontinued							
Pin	Name	Туре	Connection if not used	Description				
11	SDA	D_IN/OUT	External pull down to GND	I ² C Bus. Bidirectional data line				
12	VMON4	A_IN	Open, refer <u>Section 22</u> " <u>Safety"</u>	Voltage monitoring input 4				
13	VMON3	A_IN	Open, refer to <u>Section 22</u> <u>"Safety"</u>	Voltage monitoring input 3				
14	FS0B	D_OUT	Open, refer to <u>Section 22</u> <u>"Safety"</u>	Fail-safe Output 0. Active Low. Open drain structure.				
15	VMON2	A_IN	Open, refer to <u>Section 22</u> <u>"Safety"</u>	Voltage monitoring input 2				
16	VMON1	A_IN	Open, refer to <u>Section 22</u> <u>"Safety"</u>	Voltage monitoring input 1				
17	VCOREMON	A_IN	Connection mandatory	VCORE monitoring input: Must be connected to Buck1 output voltage or Buck1/2 in dual phase				
18	PGOOD	D_OUT	Connection mandatory	Power good output				
19	RSTB	D_OUT/IN	Connection mandatory	Reset output. Active Low. The main function is to reset the MCU. Reset input voltage is monitored to detect external reset and fault conditions				
20	FIN	D_IN	External pull down to GND	Frequency synchronization input				
21	GNDFS	GND	Connection mandatory	Fail-safe ground				
22	VDIG	A_OUT	Connection mandatory	VDIG output pin. A 1 μF capacitor is required at this pin				
23	VANA	A_OUT	Connection mandatory	VANA output pin; A 1 μF capacitor is required at this pin				
24	FOUT/AMUX	D_OUT/A_OUT	Open	Frequency synchronization output				
25	LV_HVLDO_IN	P_IN	Open	Low Voltage HVLDO Input				
26	HVLDO	P_OUT	Open	HVLDO output voltage				
27	VDDOTP	A_IN	Pull down to GND	Voltage for OTP fuse programming and Debug mode				
28	HV_HVLDO_IN	P_IN	Open	High Voltage HVLDO Input				
29	PSYNC	D_IN/D_OUT	Open or pull down to GND	Power Synchronization input/output				
30	FCCU2	D_IN	Pull up to VDDIO with a 5.1 kΩ resistor	Fault Collection and Control Unit input 2.				
31	FCCU1/WDI	D_IN	Pull down to GND with a 22 kΩ resistor	Fault Collection and Control Unit input 2.				
32	BUCK2_FB	A_IN	Open	Low Voltage Buck2 voltage feedback				
33	INTB	D_OUT	Open	Interrupt output				
34	BUCK2_SW	P_OUT	Open	Low Voltage Buck2 switching node				
35	BUCK2_IN	P_IN	Open	Low Voltage Buck2 input voltage				
36	BUCK1_IN	P_IN	Connection mandatory	Low Voltage Buck1 input voltage				

Table 2. VR5510 pin descriptions...continued

Multi-Output PMIC with SMPS and LDO

Pin	Name	Туре	Connection if not used	Description
37	BUCK1_SW	P_OUT	Connection mandatory	Low Voltage Buck1 switching node
38	LDO3	P_OUT	Open	Output of the voltage regulator LDO3
39	BUCK1_FB	A_IN	Connection mandatory	Low Voltage Buck1 voltage feedback
40	LDO3_IN	P_IN	Open	Input of the voltage regulator LDO3
41	PRE_COMP	A_IN	Refer to <u>Section 28.3.2</u> <u>"VPRE"</u>	VPRE, High Voltage Buck Controller compensation network
42	PRE_CSP	A_IN	Refer to <u>Section 28.3.2</u> <u>"VPRE"</u>	VPRE, High Voltage Buck Controller curren sense positive input
43	PRE_GLS	A_OUT	Refer to <u>Section 28.3.2</u> <u>"VPRE"</u>	VPRE, Low Side gate driver output for external MOSFET
44	PRE_SW	P_OUT	Refer to <u>Section 28.3.2</u> <u>"VPRE"</u>	VPRE, High Voltage Buck Controller switching output
45	PRE_GHS	A_OUT	Refer to <u>Section 28.3.2</u> <u>"VPRE"</u>	VPRE, High Side gate driver output for external MOSFET
46	PRE_BOOT	A_IN/A_OUT	Refer to <u>Section 28.3.2</u> <u>"VPRE"</u>	VPRE, High Voltage Buck Controller bootstrap connection. A capacitor is require at this pin
47	VBOS	P_OUT	Connection mandatory	Best of supply output voltage pin.
48	PRE_FB	A_IN	Refer to <u>Section 28.3.2</u> <u>"VPRE"</u>	VPRE, High Voltage Buck Controller feedback voltage and current sense negati input
49	PWRON1	A_IN	External pull down to GND	Power Enable input 1
50	VSUP1	A_IN	Connection mandatory	Power supply 1 of the device. An external reverse battery protection diode in series is mandatory. Add a 0.1 μ F decoupling close VSUP1/2 points.
51	VSUP2	A_IN	Connection mandatory	Power supply 2 of the device. An external reverse battery protection diode in series is mandatory
52	GND	GND	Connection mandatory	Main ground
53	LDO1_IN	P_IN	Open	Linear regulator 1 input voltage
54	LDO1	P_OUT	Open	Linear regulator 1 output voltage
55	LDO2	P_OUT	Open	Linear regulator 2 output voltage
56	LDO2_IN	P_IN	Open	Linear regulator 2 input voltage
57	EP	GND	Connection mandatory	Exposed pad. Must be connected to GND

Table 2. VR5510 pin descriptions...continued

8 General Product Characteristics

8.1 Maximum ratings

All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Symbol	Description (Rating)	Min	Мах	Unit
Voltage ratings				
VSUP1/2, PWRON1, HV_HVLDO_IN	DC Voltage at Power Supply VSUP1/2, PWRON1, HV_ HVLDO_IN pins	-0.3	60	V
PRE_SW	DC Voltage at PRE_SW pin	-2.0	60	V
VMONx, FS0B	DC Voltage at VMON1,2,3,4, VCOREMON, FS0B pins	-0.3	60	V
BUCKx_SW	Low Voltage Buckx switching node	-0.3	5.5	V
PRE_GHS, PRE_ BOOT			65.5	V
VDDOTP,	DC Voltage at VDDOTP	-0.3	10	V
VBOOST, BOOST_ LS, LDO1_IN	DC Voltage at BOOST_LS, VBOOST, LDO1_IN pins	-0.3	8.5	V
VDIG, VANA	DC Voltage at VDIG, VANA pins	-0.3	1.65	V
All other pins	DC Voltage at all other pins	-0.3	5.5	V
ESD ratings				
Human Body Model (J	ESD22/A114): 100 pF, 1.5 kΩ			
V _{ESD_HBM1}	All pins	-2.0	2.0	kV
Charge Device Model	(JESD22/C101)			
V _{ESD_CDM1}	All pins	-500	500	V
GUN (VSUP1, VSUP2	, HV_HVLDO_IN, PWRON1, FS0B, VDDOTP)	1		
V _{ESD_GUN1}	Discharged contact test - 330 Ω/150 pF - IEC61000-4-2	-8	8	kV
V _{ESD_GUN2}	Discharged contact test - 2 k Ω /150 pF - ISO10605:2008	-8	8	kV
V _{ESD_GUN3}	Discharged contact test - 2 kΩ/330 pF - ISO10605:2008	-8	8	kV

8.2 Electrical characteristics

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground.

Multi-Output PMIC with SMPS and LDO

Symbol	Parameter	Min	Тур	Max	Unit
Power Supply					
IVSUP_NORMAL	Current in Normal Mode, all regulators ON (I _{OUT} =0)	_	15	25	mA
	Current in Standby Mode, all regulators OFF, except VPRE, HVLDO	_	35	50	μΑ
QISTBY	Tj = 25° C, (I _{OUT} =0), VSUP = 12 V				
	Current in Standby Mode, all regulators OFF, except VPRE, HVLDO, BUCK3, LDO2, Tj = 25° C, (I _{OUT} =0), VSUP = 12 V	—	85	-	μA
QiDSM	Current in Deep Sleep Mode, all regulators OFF, except HVLDO, Tj = 25° C (I _{OUT} =0), VSUP = 12 V	_	15	25	μΑ
QiOFF	Current in OFF Mode, Tj = 25° C, VSUP = 12 V	—	15	25	μA
V _{SUP_UV7}	VSUP under-voltage threshold (7 V)	7.2	7.5	7.8	V
	VSUP under-voltage threshold high (during power up and Vsup rising) OTP configuration VSUPCFG_OTP = $0^{[1]}$	4.7	_	5.1	V
V _{SUP_UVH}	VSUP under-voltage threshold high (during power up and Vsup rising) OTP configuration VSUPCFG_OTP = 1 ^[1]	6	_	6.4	V
M	VSUP under-voltage threshold low (during power-up and Vsup falling) OTP configuration VSUPCFG_OTP = 0	4.0	_	4.4	V
V _{SUP_UVL}	VSUP under-voltage threshold low (during power-up and Vsup falling) OTP configuration VSUPCFG_OTP = 1	5.3	_	5.7	V
T _{SUP_UV}	V_{SUP_UV7},V_{SUP_UVH} and V_{SUP_UVL} filtering time	6	10	15	us
VPRE_POR, VBOS_POR, VSUP_POR	VR5510 transitions to Unpowered state (also active in Standby mode)	2.5	2.6	2.7	V
Interface supply	pins				
V _{DDIO}	VDDIO supply voltage range	1.75	_	3.4	V
		1			

Table 4. Electrical characteristics

[1] VSUPCFG_OTP should be set to 1 if VPRE > 4.5 V

8.3 Operating range

No operation	Extended operation	Full operation	No operation Risk of damage				
See	note VSUP 5.1	V 60	V VSUP 1/2				
R = Rshunt + Lpre_dcr + HSpre_ron + Lpi_dcr aaa-03935							
Figure 4. V	Figure 4. VR5510 Operating voltage range						
Note: See	Note: See Section 10.1						

Below the VSUP_UVH threshold, the extended operation range depends on the VPRE output voltage configuration and the external components.

- When VPRE is configured at 5 V, VPRE might not remain in its regulation range
- VSUP minimum voltage depends on the external components (LPI_DCR) and the application conditions (IPRE, F_VPRESW).

When VPRE is switching at 455 kHz, the VR5510 maximum continuous operating voltage is 36 V. The part is validated at 48 V for a limited duration of 15 minutes at room temperature to satisfy the jump-start requirement of 24 V applications. It can sustain a 58 V load dump without external protection.

When VPRE is switching at 2.2 MHz, the VR5510 maximum continuous operating voltage is 18 V. The part is validated at 26 V for limited duration of 2 minutes at room temperature to satisfy the jump-start requirement of 12 V applications and a 35 V load dump.

8.4 Thermal ratings

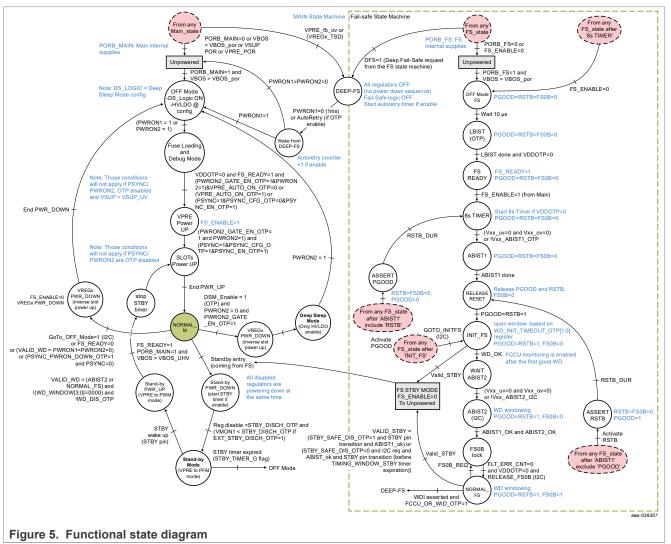
Table	5.	Thermal	ratings
-------	----	---------	---------

Symbol	Parameter	Conditions	Min	Max	Unit
R _{θJA}	Thermal Resistance Junction to Ambient ^[1]	2s2p circuit board ^[2]	—	27	°C/W
R _{θJA}	Thermal Resistance Junction to Ambient ^[1]	2s8p circuit board ^[2]	_	17	°C/W
R _{θJB}	Junction to Board Thermal Resistance	2s2p circuit board ^[2]	_	22	°C/W
R _{θJB}	Junction to Board Thermal Resistance	2s8p circuit board ^[2]	_	15	°C/W
R _{0JC_BOTTOM}	Junction to Case Bottom Thermal Resistance	2s8p and 2s2p circuit board ^[2]	_	1.5	°C/W
$R_{\theta JC_{TOP}}$	Junction to Case Top Thermal Resistance	2s8p and 2s2p circuit board ^[2]	_	17	°C/W
$\Psi_{JT_{TOP}}$	Thermal Resistance Parameter Junction to top ^[1]	Between the package top and the junction temperature ^[1]		1	°C/W
T _A	Ambient Temperature (Automotive)		-40	125	°C
T _A	Ambient Temperature (Industrial)		-40	105	°C
TJ	Junction Temperature		-40	150	°C
T _{STG}	Storage Temperature		-55	150	°C

Determined in accordance with JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is solely for a thermal [1] performance comparison of one package to another in a standardized specified environment. It is not meant to predict the performance of a package in an application-specific environment. Uniform power is assumed on die top surface. Thermal test board meets JEDEC specification for this package (JESD51-9)

[2]

8.5 EMC compliancy


Pin	Pin_Type	EMC Compliance
VBAT (VSUP1/2)	Global	Conducted Emissions – IEC 61967-4 (150 Ω method, 12-M level, 50% load on regulators)
HV_HVLDO_IN	Global	Conducted Immunity – IEC 62132-4 (36dBm, Class A, No state change on FS0B, RSTB, PGOOD, INTB, 50% load on all regulators and accuracy in spec
PWRON1	Global	
FS0B	Global	Conducted Emissions – IEC 61967-4 (150 Ω method, 12-M level, 50% load on regulators) Conducted Immunity – IEC 62132-4 (30dBm, Class A, No state change on FS0B, RSTB, PGOOD, INTB, 50% load on all regulators and accuracy in spec

VR5510 Product data sheet

Pin	Pin_Type	EMC Compliance
BUCK1/2/3_IN	Local, Supply	Conducted Emissions – IEC 61967-4 (150 Ω method, 10-K level, 50% load on regulators)
LDO1/2/3_IN	Local, Supply	Conducted Immunity – IEC 62132-4 (12dBm, Class A, HVLDO in switch mode. No state change on FS0B, RSTB, PGOOD, INTB, 50% load on all regulators and accuracy in spec
LV_HVLDO_IN	Local, Supply	·······g·······g·······g·······g·······
VRE_FB	Local	Conducted Emissions – IEC 61967-4 (150 Ω method, 10-K level, 50% load on regulators)
BUCK1/2/3_FB	Local	Conducted Immunity – IEC 62132-4 (12 dBm, Class A. No state change on FS0B, RSTB, PGOOD, INTB, 50% load on all regulators and accuracy in spec
LDO1/2/3	Local	
HVLDO	Local	
VBOOST	Local	
VBOS	Local	
PWRON2	Local	Conducted Emissions – IEC 61967-4 (150 Ω method, 12-M level, 50% load on regulators) Conducted Immunity – IEC 62132-4 (12 dBm, Class A. No state change on FS0B, RSTB, PGOOD, INTB, 50% load on all regulators and accuracy in spec
PGOOD	Local	Conducted Emissions – IEC 61967-4 (150 Ω method, 10-K level, 50% load on regulators)
RSTB	Local	Conducted Immunity – IEC 62132-4 (12 dBm, Class A. No state change on FS0B, RSTB, PGOOD, INTB, 50% load on all regulators and accuracy in spec
STBY	Local	
STBY_PGOOD	Local	
VDDIO	Local	

Table 6. VR5510 EMC compliancy chart...continued

Multi-Output PMIC with SMPS and LDO

8.6 Functional state diagram

8.7 Functional device operation

The VR5510 device has two independent logic blocks. The Main state machine manages the power management, Standby mode, Deep Sleep mode, and the power-on sources. The Fail-safe sate machine manages entry into Standby and monitors power management and the MCU.

8.8 Main state machine

The VR5510 starts when VSUP > V_{SUP_UVH} and PWRON1 > PWRON1_{VIH} or PWRON2 > PWRON2_{VIH}. VBOS powers up first, followed by VPRE. OTP programming determines the power-up sequence for the remaining regulators. When the powerup sequence is finished, the main state machine is in Normal_M mode, which is the application running mode with all the regulators on. Depending on the OTP configuration, HVLDO can be programmed to be the first regulator to start up.

The device can be put into Standby mode by toggling the STBY pin or by issuing an I^2C command in conjunction with toggling the STBY pin (refer to <u>Section 8.16 "Standby</u> <u>mode entry"</u> for further details). The device goes into Standby mode after verifying that all disabled regulators have been discharged to less than 100 mV.

The device can be put into Deep Sleep mode by toggling the PWRON2 pin (refer to <u>Section 8.17 "Modes of operation"</u> for further details). The device goes through the power-down sequence to reach the deep sleep state where only the HVLDO is kept alive.

The device can be put into OFF mode by an I^2C command from the MCU. For an application without MCU or QM, when the device is disabled, it goes into OFF mode when both PWRON1 and PWRON2 = 0. The device goes into OFF mode following the power-down sequence in order to stop all the regulators in the reverse order that they were powered up. When VPRE is supplying an external PMIC, VPRE shutdown can be delayed from 250 us or 32 ms by the VPRE_OFF_DLY_OTP bit (CFG_SM_2_OTP register) in order to wait for the external device's power-down sequence to complete.

If a VSUP loss (VSUP < V_{SUP_POR}), a VPRE loss (VPRE < V_{PRE_POR}), or a VBOS (VBOS < V_{BOS_POR}) loss occurs, the device halts operation, disables HVLDO and goes directly into UNPOWERED mode without initiating the power-down sequence. The device restarts again when VSUP > V_{SUP_UVH} and PWRON1> PWRON1_{VIH} or PWRON2> PWRON2_{VIH}.

8.9 Deep Fail-safe state

The Deep Fail-safe state is part of the Main state machine.

If a VPRE_FB_OV or a TSD detection occurs on an enabled regulator or if the Fail-safe state machine issues a Deep Fail-safe request (DFS = 1), the device halts operation and goes directly to DEEP-FS mode without initiating the power-down sequence.

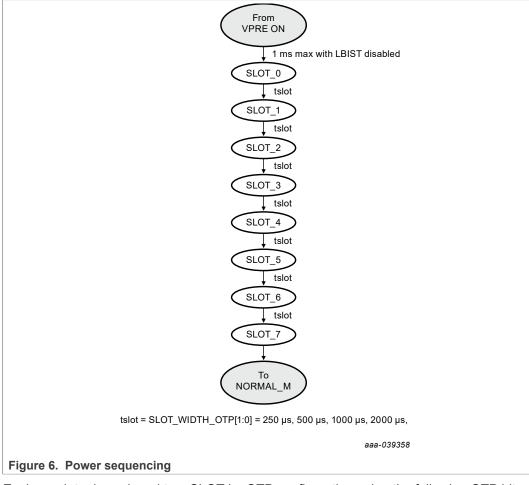
The device exits Deep Fail-safe mode when the PWRON1 pin is set to zero. If the OTP configuration (AUTORETRY_EN_OTP bit in CFG_SM_2_OTP register) has activated the auto-retry timeout feature (AUTORETRY_TIMEOUT_OTP bit in CFG_CLOCK_3_OTP register), the device exits Deep Fail-safe mode after either 4 seconds or 100 ms.

OTP configuration can limit the number of auto-retries to 15 or can set the number of auto-retries to be unlimited (AUTORETRY_INFINITE_OTP bit in CFG_SM_2_OTP register).

The device restarts when VSUP > $V_{SUP UVH}$ and PWRON1> PWRON1_{VIH}.

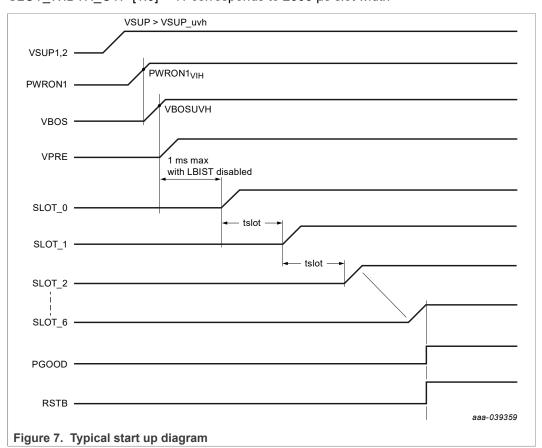
8.10 Fail-safe state machine

The Fail-Safe state machine starts with LBIST execution (LBIST is OTP programmable and can be disabled to speed up the startup process) when VBOS > V_{BOS_POR} . When the LBIST completes, the 8-second timer monitoring the RSTB pin starts. ABIST1 starts automatically when all the regulators assigned to ABIST1 have passed their undervoltage and overvoltage checks. When the ABIST1 completes, the RSTB and PGOOD pins are released and the initialization of the device is opened via a programmable window based on the WD_INIT_TIMEOUT_OTP[1:0] bit field (CFG_2_OTP register). An ABIST1 fail does not prevent the release of RSTB and PGOOD.


The first good watchdog refresh closes the INIT_FS and the device waits for an I^2C command to execute the ABIST2. When the ABIST2 completes successfully, the fault counter must be cleared with the appropriate number of good watchdog refreshes in order to release the FS0B pin.

When the FS0B pin is released, the device is ready for application running mode with all the selected monitoring activated. In application running mode, the VR5510 reacts by asserting the safety pins (PGOOD, RSTB and FS0B) according to its configuration when a fault is detected (refer to the *VR5510 Safety Manual* for more details).

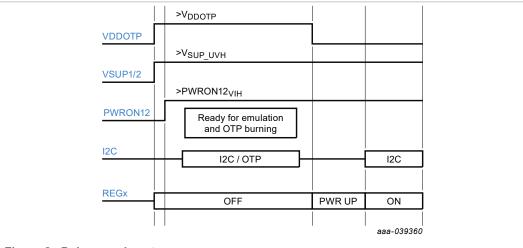
8.11 Power sequencing


VPRE is the first regulator to start automatically before SLOT_0. The other regulators start according to the OTP power sequencing configuration. Seven slots are available to program the start-up sequence of the BUCK1, BUCK2, BUCK3, BOOST, LDO1, LDO2, LDO3 and HVLDO regulators. Additionally, HVLDO can be programmed to start up (or not start up) in a slot by using the HVLDO_SLOT_EN_OTP bit (CFG_SEQ_4_OTP register). For applications that require HVLDO to track BUCK1, BUCK1, BUCK1 and HVLDO are separated by one slot and HVLDO starts first, followed by BUCK1.

The power-up sequence starts at SLOT_0 and ends at SLOT_7; the power-down sequence is executed in reverse order. If not all seven of the slots are used, the state machine skips the unused slots. The regulators assigned to SLOT_7 are not started during the power-up sequence. They can be started (or not) later in Normal_M mode with an I^2C Write command to the M_REG_CTRL1/2 registers.

Each regulator is assigned to a SLOT by OTP configuration using the following OTP bits: BUCK1 regulator assigned to a slot using BUCK1S_OTP [2:0]

BUCK2 regulator assigned to a slot using BUCK2S_OTP [2:0] BUCK3 regulator assigned to a slot using BUCK3S_OTP [2:0] LDO1 regulator assigned to a slot using LDO1S_OTP [2:0] LDO2 regulator assigned to a slot using LDO2S_OTP [2:0] HVLDO regulator assigned to a slot using HVLDOS_OTP [2:0] BOOST regulator assigned to a slot using BOOSTS_OTP [2:0] The width of each slot is configurable via OTP using the SLOT_WIDTH_OTP [1:0] bitfield SLOT_WIDTH_OTP [1:0] = 00 (Default) corresponds to 250 µs slot width SLOT_WIDTH_OTP [1:0] = 01 corresponds to 500 µs slot width SLOT_WIDTH_OTP [1:0] = 10 corresponds to 1000 µs slot width


The real power-up sequence depends not only on the slot OTP setting but also on the different soft-start times for each regulator. If the LBIST is enabled, VBOSUVH to SLOT_0 timing can be higher than 1 ms. LBIST typical duration is 3 ms.

8.12 Entering Debug mode using the VDDOTP pin

The VR5510 provides a means of evaluating the device in Debug mode. Debug mode allows users, via the I^2C interface, to access the OTP register set, modify the registers, and test device functions. During Debug mode all regulators remain off.

The VR5510 enters in Debug mode with the following sequence:

- 1. Apply VDDOTP pin > 5 V.
- 2. Apply VSUP1/2 > V_{SUP_UVH} and PWRON1 > PWRON1_{VIH} or PWRON2 > PWRON2_{VIH}.
- 3. The device now starts in Debug mode, ready for debugging or OTP programming.
- 4. Apply VDDOTP = 0 V to turn on the device with the modified configuration.

Figure 8. Debug mode entry

If VDBG voltage is maintained at the VDDOTP pin, a new OTP configuration can be emulated or programmed by I²C communication using the NXP GUI Interface and NXP socket EVB. When the OTP process completes, the device starts with the new OTP configuration when the VDDOTP pin is asserted low. OTP emulation/programming is possible during engineering development only. OTP programming in production is done by NXP.

In Debug mode, the Watchdog window is fully opened, the Deep Fail-safe request from the Fail-safe state machine (DFS = 1) is masked, the 8-second timer monitoring the RSTB pin is disabled and the Failsafe output pin FS0B cannot be released. Entering Standby mode is not possible while the device is in Debug mode.

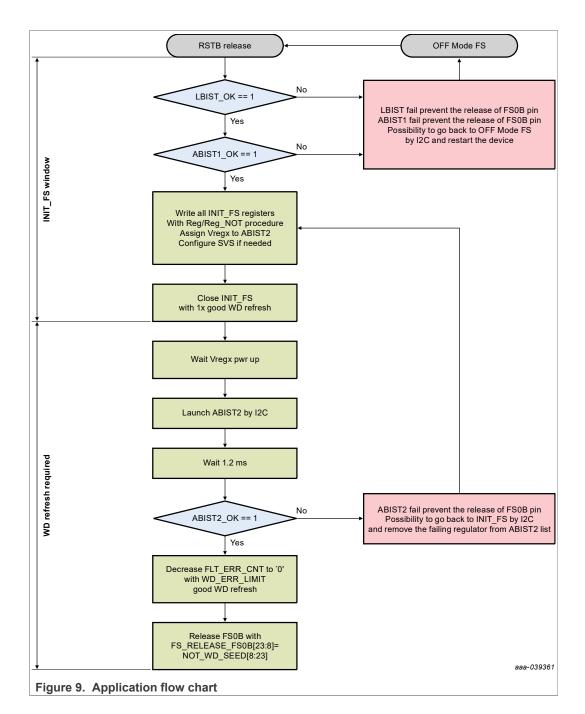
In Debug mode, the I²C address is fixed at 0x20 for Main digital access and 0x21 for Failsafe digital access.

In Debug mode, no watchdog refresh is required in order to facilitate debugging of the hardware and software routines (i.e. I²C commands). However, the watchdog functionality is kept on (seed, LFSR, WD refresh counter, WD error counter). WD errors are detected and counted and are reacted to on the RSTB pin.

To release FS0B without taking care of the Watchdog window, disable the Watchdog window with WD_WINDOW [3:0] = 0000 in the FS_WD_WINDOW register before leaving Debug mode. To leave Debug mode, write DBG_EXIT bit = 1 in the FS_STATES register.

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground.

Table 7. Electrical characteristics

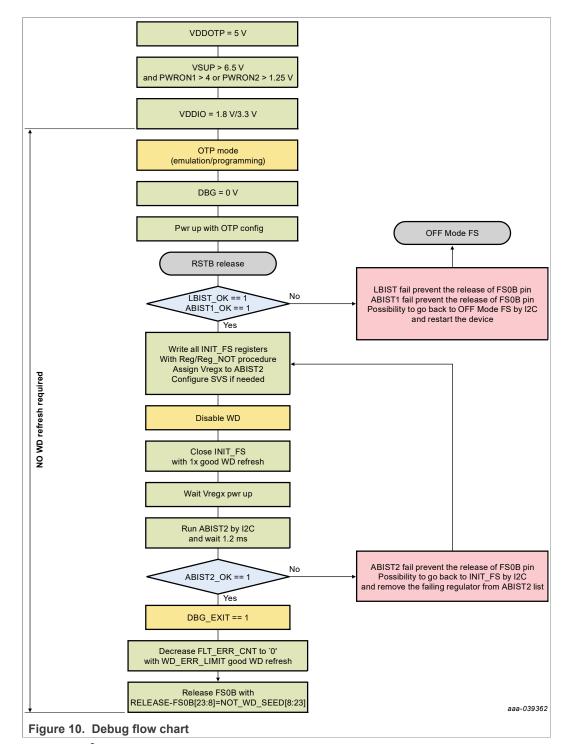

Symbol	Parameter	Min	Тур	Max	Unit
V _{DDOTP}	Debug mode entry threshold	5	-	8	V
T _{DBG}	Debug mode entry filtering time	4	-	8	μs

8.13 Flow charts

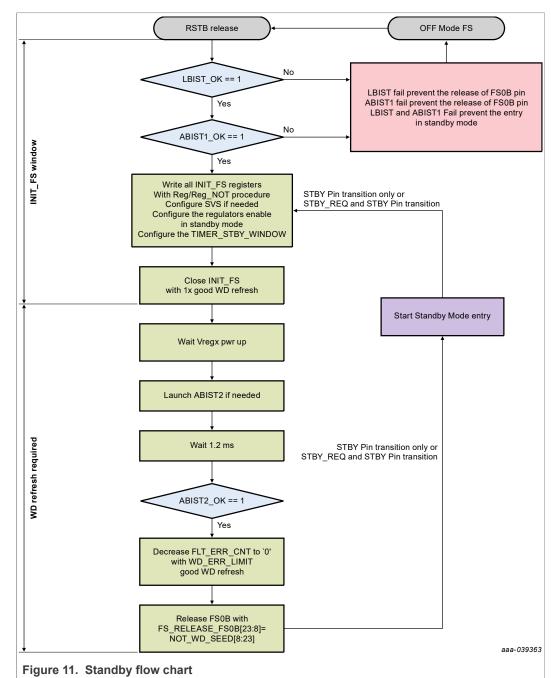
The following flow charts describe how the device starts, how to go in Standby mode, and what to do when the RSTB pin is released.

8.14 Application flow charts

In application mode, the VDDOTP pin is connected to GND and a watchdog refresh is required as soon as INIT_FS is closed.



8.15 Debug flow charts


In Debug mode, the VDDOTP pin is managed as described in <u>Section 8.12 "Entering</u> <u>Debug mode using the VDDOTP pin"</u>. The watchdog window is fully open and a watchdog refresh is not required.

VR5510 Product data sheet

Multi-Output PMIC with SMPS and LDO

Note: Use I²C to disable the watchdog before INIT_FS closure and Debug mode exit in order to allow FS0B to be released. Otherwise, FS0B remains stuck low in debug mode.

8.16 Standby mode entry

8.17 Modes of operation

Depending on the application, VR5510 allows several modes of operation: OFF mode, Deep Sleep mode, Standby mode, and Normal mode.

1. OFF mode:

OFF mode is the initial state of the device where all the regulators are off.

2. Deep Sleep mode:

VR5510 Product data sheet

Deep Sleep mode shuts down all VR5510 regulators except the HVLDO in LDO mode. The PWRON2 input detector is active in Deep Sleep mode and can trigger a turn-on event.

The DSM_EN_OTP bit (DSM_EN_OTP register) enables or disables the Deep Sleep (DSM) mode of operation.

Table 8. Deep Sleep mode OTP bit settings

	OTP description	Dee	p Sleep mode
DSM_EN_OTP	Enables or disables Deep Sleep mode of operation	0	DSM Disabled
		1	DSM Enabled

When DS mode is enabled, the PWRON2 pin is used to transition to DSM mode from normal operation, in which case, the PWRON2_DSM_EN bit (M_MODE register) should be enabled.

If Deep Sleep mode is enabled, the HVLDO cannot be assigned to a slot and always starts first on the power-up sequence (before VPRE).

In Deep Sleep Mode, the HVLDO can be only use in LDO mode.

3. Standby mode:

Standby mode is a low-power mode used when the device is required to go into a minimal supply current mode while maintaining minimal preset output voltages. Standby mode is entered by toggling the STBY pin when conditions are programmed correctly with the STBY_EN_OTP bit (CFG_ VPRE_ 2_OTP register) and the STBY_WINDOW_EN_OTP bit (CFG_ 2_OTP register).

The main regulators switched on during low-power Standby mode are VPRE and the HVLDO. VPRE is forced to operate in PFM mode while the HVLDO operates in LDO mode. An option is available to operate other regulators (except BOOST) as well, but the switchers are then forced to operate only in PFM.

The BUCKx_STBY_EN bit enables or disables the Buck regulators in Standby mode.

The LDOx_STBY bit enables or disables the LDOs in Standby mode.

The HVLDO_STBY bit enables or disables the LDOs in Standby mode.

Refer to AN12880 for more Standby mode examples and details.

4. Normal mode:

In Normal mode, the device operates with the regulators turned-on according to the preprogrammed settings. The device stays in Normal mode until the processor requests a transition into Standby mode or Deep Sleep mode. The device exits Normal mode and goes into OFF mode or Deep Fail-safe mode when an internal fault is detected or an external fault is indicated by the processor.

9 Best Of Supply

9.1 Functional description

The VBOS regulator manages the best of supply from VSUP, VPRE, or VBOOST to efficiently provide a 5.0 V output for the device's internal biasing. VBOS also supplies the VPRE high-side and low-side gate drivers and the VBOOST low-side gate driver.

A VBOS undervoltage could result in the device not being fully functional. Consequently, VBOS_UVL detection powers down the device

A VSUP_UV7 undervoltage threshold is used to enable the path from VSUP to VBOS when VSUP < VSUP_UV7. This provides a low drop path from VSUP while VRPE is going low and when the device is powering up with VPRE not started. When VSUP > VSUP_UV7, VBOS is forced to use either VPRE or VBOOST to optimize efficiency.

9.2 Electrical characteristics

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Тур	Мах	Unit
Best Of Supply		1			
V _{BOS}	Best of supply output voltage	3.3	5.0	5.25	V
V _{BOSUVH}	VBOS under voltage threshold high	4.1	_	4.5	V
V _{BOS_UVL}	VBOS under voltage threshold low	3.2	_	3.4	V
T _{BOS_UV}	V_{BOSUVH} and V_{BOS_UVL} filtering time	6	10	15	us
T _{BOS_POR}	VBOS under voltage threshold filtering time	0.5	_	1.5	us
I _{BOS}	Best of supply current capability		_	60	mA
0	Effective output capacitor	4.7	_	10	uF
C _{Out_BOS}	Output decoupling capacitor	—	0.1	-	uF

Table 9. Electrical characteristics

10 High Voltage Buck: VPRE

10.1 Functional description

VPRE is a high voltage, synchronous, peak current mode buck controller that uses an external logical level NMOS. VPRE works in PWM mode during Normal operation and in PFM mode in Standby operation. VPRE input voltage is limited to **VSUP = LPI_DCR × IPRE + VPRE_UVL / DMAX with DMAX = 1 - (FPRE_SW × VPRETOFF_MIN)**. A bootstrap capacitor is required to supply the gate drive circuit of the high-side NMOS. The output voltage is configurable by OTP from 3.3 V to 5.2 V using the VPREV_OTP [5:0] bit field (CFG_VPRE_1_OTP register), and the switching frequency is configurable by OTP using the VPRE_CLK_SEL_OTP bit (CFG_CLOCK_4_OTP register). For 12-Volt automotive applications, the frequency can be set to 455 kHz or 2.2 MHz. For 24-Volt applications, the frequency should set to 455 kHz.

Stability is ensured by an external Type 2 compensation network with slope compensation.

The output current is sensed via an external shunt in series with the inductor. The external components (NMOS gate charge, inductor, shunt resistor), the gate driver current capability, and the switching frequency define the maximum current capability. Overcurrent detection is implemented to protect the external MOSFETs. If an overcurrent is detected after the HS minimum TON time, the HS turns off and turns on again at the next rising edge of the switching clock. The overcurrent induces a duty cycle reduction

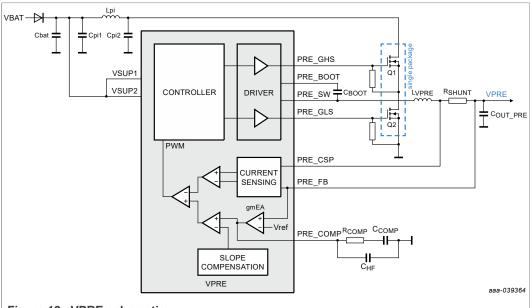
that could lead to the output voltage gradually dropping, causing an under-voltage condition on VPRE or on one of the cascaded regulators.

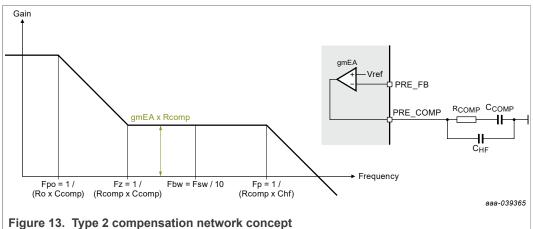
The maximum input voltage is 60 V, which allows operation in 24-Volt truck applications without external protection to sustain ISO 16750-2:2012 load dump pulse 5b. VPRE typically is the input supply for all the regulators and VSUP must be the high voltage input for HVLDO during Deep Sleep mode. VPRE can be the supply for local loads remaining inside the ECU.

By default, the VPRE switching frequency is derived from the internal oscillator and can be synchronized with an external frequency signal applied at FIN input pin. The change from internal oscillator to external clock or vice versa is controlled by I^2C .

 V_{PRE_UVH} , V_{PRE_UVL} , and $V_{PRE_FB_OV}$ thresholds are monitored from the PRE_FB pin and manage certain transitions of the Main state machine, as described in <u>Section 8.6</u> <u>"Functional state diagram"</u>. These monitorings are not safety related.

10.2 Application schematic




Figure 12. VPRE schematic

A PI filter, as shown in Figure 12, with $F_{RES} = 1 / [2\pi x \sqrt{(LC)}]$ and calculated for $F_{RES} < VPRE_FSW / 10$, is required to filter the VPRE switching frequency on the Battery line. For a clean biasing of the device, The VSUP1,2 pins must be connected ahead of the PI filter. The Cpi1 capacitor must be implemented close to the VSUP1,2 pins. The Cpi2 capacitor must be implemented close to the external MOSFET(Q1). The bootstrap capacitor value should be sized to be greater than 10 times the Gate Source capacitor of Q. Gate to Source resistor on Q1 and Q2 are recommended in order to guarantee a passive switch-off of the transistors when a pin disconnection occurs.

10.3 Compensation network

The external compensation network, made with R_{COMP} , C_{COMP} and C_{HF} must be calculated for the best compromise between stability and transient response, based on the below conceptual plot of the Type 2 compensation network transfer function.

Multi-Output PMIC with SMPS and LDO

VPRE output voltage	VPRE switching Frequency	RCOMP	CCOMP	CHF
3.3 V	455 kHz	1.5 k	22 nF	18 pF
5 V	455 kHz	2.3 k	20 nF	20 pF
3.3 V	2.2 MHz	8 k	20 nF	_
5 V	2.2 MHz	22 k	20 nF	—

 Table 10. Recommended compensation network components

10.4 Electrical characteristics

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground. Typical values are based on TA = 25 °C.

Symbol	Parameter	Min	Тур	Мах	Unit
VPRE					
		_	3.3	_	V
		_	3.4	-	V
		—	3.5	_	V
	Output Voltage	—	3.7	-	V
V _{PRE}	(VPREV_OTP[5:0] configuration) (VSUPCFG_OTP bit should be set to 1 when VPRE is set above 4.5 V)	—	4.0	—	V
		—	4.5	—	V
		_	5.0	—	V
		_	5.1	_	V
		_	5.2	-	V
V _{PREACC_PWM}	Output Voltage Accuracy, PWM Mode	-1.5	—	1.5	%
V _{PREACC_PFM}	Output Voltage Accuracy, PFM Mode	-3	—	3	%
V _{PRE_TON}	Maximum turn on time, output voltage to 90%	—	—	1	ms
V _{PRE_FB_OV}	Over voltage threshold protection (all voltages settings except 3.3 V)	5.5	_	6.5	V

Table 11. Electrical characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
V _{PRE_FB_OV}	Over voltage threshold protection if VPREV_OTP[5:0] set to 3.3 V	3.7	_	4	V
T _{PRE_FB_OV}	V _{PRE_FB_OV} filtering time	1	2	3	μs
V _{PRE_UVH}	Under voltage threshold high	2.9	_	3.1	V
V _{PRE_UVL}	Under voltage threshold low	2.5		2.7	V
T _{PRE_UV}	$V_{\text{PRE}_\text{UVH}}$ and $V_{\text{PRE}_\text{UVL}}$ filtering time	6	10	15	μs
	Switching Frequency Range	430	455	480	kHz
VPRE_FSW	(OTP configuration)	2.1	2.22	2.35	MHz
	Typical inductor value for VPRE_FSW =455 kHz	3.3	4.7	6.8	μH
-VPRE	Typical inductor value for VPRE_FSW =2.22 MHz	1	1.5	2.2	μH
	Typical inductor DCR value	—	10	_	mΩ
Vpre_load_reg	Transient load regulation Vsup= 6 V to 18 V, from 1 A to 3 A, di/dt = 300 mA/µs	-3	_	3	%
Vpre_load_reg	Transient load regulation, Vsup= 36 V, from 1 A to 3 A, di/dt = 300 mA/µs	-6	_	6	%
Vpre_line_reg	Transient line regulation at 455 kHz, Vsup= 6 V to 18 V and Vsup=12 V to 36 V, dv/dt = 100 mV/μs	-3	_	3	%
B	Current sense resistor (±1%) for 455 kHz	10	_	20	mΩ
R _{SHUNT}	Current sense resistor (±1%) for 2.22 MHz	15	_	20	mΩ
VPRE_LIM_GAIN	Current sense amplifier gain	4.5	5	5.5	
		35	50	65	mV
	Current sense amplifier peak detection threshold (OTP configuration), VPREILIM OTP [1:0]	60	80	100	mV
V _{PRE_LIM_TH1}	Note: 150 mV setting is not available for 2.22 MHz	96	120	144	mV
		120	150	180	mV
ILIM_PRE	Inductor peak current limitation range (R_{SHUNT} = 10 m Ω , $V_{PRE_LIM_TH1}$ = 120mV)), I _{LIM_PRE} = $V_{PRE_LIM_TH}$ / R_{SHUNT}	9.6	12	14.4	A
V _{PRE_DRV}	HS and LS gate driver output voltage	-	VBOS	—	V
		54	130	220	mA
	HS and LS gate driver pull up and pull down current capability (OTP default configuration + I ² C	108	260	440	mA
IPRE_GATE_DRV	configuration)	216	520	880	mA
		378	900	1540	mA
	Effective output capacitor for 455 kHz	44	66	240	μF
COUT_PRE	Effective output capacitor for 2.22 MHz	22	44	120	μF
	Output decoupling capacitor	_	0.1	_	μF
CIN_PRE	Effective input capacitor	20		_	μF

Table 11. Electrical characteristics...continued

VR5510 Product data sheet

Symbol	Parameter	Min	Тур	Max	Unit
	Input decoupling capacitor	—	0.1	_	μF
IPRE_DRV	HS / LS gate driver average current capability IPRE_DRV < FPRE_FSW x (QCHS + QCLS) with QCHS = gate charge of Q2 at VBOS with QCLS = gate charge of Q1 at VBOS		_	50	mA
gmEA	Error Amplifier transconductance	1	1.5	2.3	mS
		29	41.4	53.8	mV/µs
		43.5	62.1	80.7	mV/µs
		50.8	72.5	94.3	mV/µs
VPRESC	Slope compensation (VPRESC_OTP configuration)	57.8	82.5	107.3	mV/µs
VPRESC		94	134.3	174.6	mV/µs
		101.2	144.6	188	mV/µs
		137.1	195.9	254.7	mV/µs
		352.8	504	655.2	mV/µs
TPRE_UV_DFS	VPRE_UVL filtering time to go to DEEP-FS during VPRE start up	1.8	2	2.2	ms
T _{PRE_DR}	Dead time to avoid cross conduction (this timing does not take into account the external FET turn ON/OFF times)		30	40	ns
VPRE_OFF_DLY_	Wait time VPRE OFF	—	250	_	μs
OTP	(VPRE_OFF_DLY_OTP configuration)	—	32	_	ms
RPRE_DIS	Discharge resistor (when VPRE is disabled)	250	500	1000	Ω
RDRV_OFF	HS and LS gate driver pull-down resistor when VPRE is disabled	5	_	35	kΩ
RBOOT_OFF	PRE_BOOT pull-down resistor when VPRE is disabled	1.1	_	2.6	kΩ

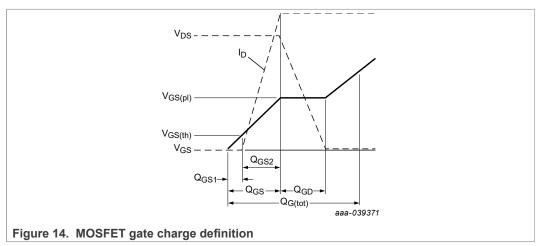
Table 11. Electrical characteristics...continued

10.5 VPRE external MOSFETs

MOSFETs selection:

- Logical level NMOS, gate drive comes from VBOS (5 V)
- VDS > 60 V for 24 V truck, bus applications
- VDS > 40 V for 12 V automotive applications
- Low Qg, <15 nC @Vgs=5 V is recommended for 455 kHz
- Low Qg, <7 nC @Vgs=5 V is recommended for 2.2 MHz

Applications	Fpre	lpre < 2A	lpre < 4A	lpre < 6A	lpre < 10A
12V	455 kHz	BUK9K25-40E, BUCK9K18-40E	BUK9K25-40E, BUCK9K18-40E	BUK9K18-40E	BUK9K18-40E, NVTFS5C471NLWFTAG, HS = BUK9M9R5-40H, LS = BUK9M3R3-40H
	2.22 MHz	BUK9K25-40E BUK9Y29-40E	BUK9K25-40E BUK9Y29-40E	BUK9K25-40E BUK9Y29-40E	NA
24 V	455 kHz	BUK9K35-60E, BUK9K52-60E	BUK9K35-60E, BUK9K52-60E	BUK9K35-60E	BUK9K12-60E


 Table 12. Recommended external MOSFETS

Other MOSFETs can be used, provided their performance is similar to that of the recommended parts. The maximum current at 2.22 MHz is limited to 6 A, for which the efficiency is equivalent to 10 A at 455 kHz. Above that value, power dissipation in the external MOSFETs becomes important and the junction temperature may rise above 175 °C.

VPRE switching slew rates can be configured by I²C to align with the external MOSFET selection and the VPRE switching frequency, and to optimize power dissipation and EMC performance. Configure the maximum slew rate by OTP and reduce it later by I²C if needed.

VR5510 uses the current source to drive the external MOSFET, so adding an external serial resistor with the gate does not affect the slew rate. To adjust the slew rate, change the current source selection by I^2C .

VPRE MOSFET switching time can be estimated as $T_{SW} = (Q_{GD} + Q_{GS} / 2) / I_{PRE_GATE_DRV}$ using the gate charge definition from Figure 14 below. Q_{GD} and Q_{GS} can be extracted from the MOSFET data sheet.

10.6 VPRE efficiency

VPRE efficiency versus current load is given for information based on the external component criteria provided and a VSUP voltage of 12 V.

Multi-Output PMIC with SMPS and LDO

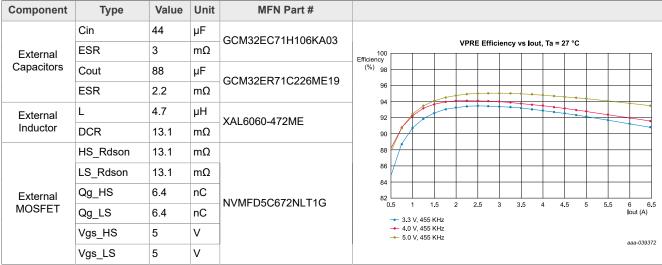


Table 13. VPRE efficiency and the sample BOM used for measurement

10.7 VPRE PFM mode current load capability

In PFM mode, the current capability can be changed by the following parameters:

- Low power clock frequency: LOW_POWER_CLK [1:0],
- VPRE Typical TON in PFM mode: VPRE_PFM_TON_OTP[1:0].

Table 14. VPRE PFM current example with VPRE set to 3.3 V/5 V and VIN to 12 V for PFM TON

VPRE V	VPRE L	LOW POWER CLK	Typical PFM TON	Typical VPRE load in PFM	
		100 kHz	300 ns	57 mA	
	1 5		550 ns	212 mA	
	1.5 μH 4.7 μH	300 kHz	300 ns	187 mA	
3.3 V			550 ns	690 mA	
3.3 V		100 kHz	300 ns	20 mA	
		47.04		550 ns	73 mA
		300 kHz	300 ns	60 mA	
			550 ns	220 mA	
		100 kHz	300 ns	32 mA	
	1 5		550 ns	117 mA	
	1.5 µH	300 kHz	300 ns	105 mA	
5 V			550 ns	390 mA	
5 V		100 kH -	300 ns	11 mA	
	47.04	100 kHz	550 ns	41 mA	
	4.7 µH	300 kHz	300 ns	34 mA	
			550 ns	124 mA	

10.8 VPRE not populated

When two VR5510 are used, only one VPRE may be required. It is possible to not populate the external components of the second VPRE in order to reduce the number of items in the bill of materials.

In that case, specific connection of the VPRE2 pins is required:

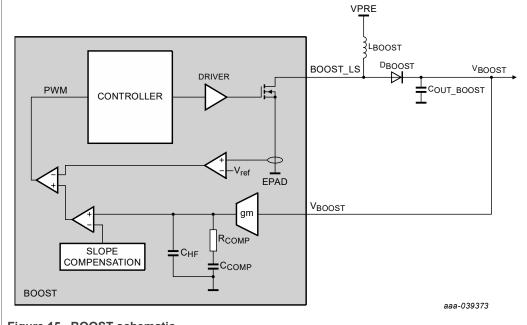
- PRE_FB2 must be connected to PRE_FB1
- PRE_CSP2 must be connected to PRE_FB1
- PRE_COMP2 must be left open
- PRE_SW2 must be connected to GND
- PRE_BOOT2 must be connected to VBOS2
- PRE_GHS2 and PRE_GLS2 must be left open
- After the startup phase, VPRE2 must be disabled by I²C with the VPREDIS bit.

11 Low Voltage Boost: VBOOST

11.1 Functional description

VBOOST block is a low voltage, asynchronous, peak current mode boost converter. VBOOST works in PWM and uses an external diode and an internal low-side FET. The BOOST regulator can be enabled using the BOOSTEN_OTP bit (CFG_BOOST_2_OTP retister). The output voltage is configurable by OTP using the VBSTV_OTP[3:0] bitfield (CFG_BOOST_1_OTP register) from 4.5 V to 6 V. The switching frequency is 2.22 MHz and the output current is limited to a value set by the VBSTILIM_OTP[1:0] bitfield (CFG_BOOST_3_OTP register). The input of the boost is connected to the output of VPRE. Stability is ensured by an internal Type 2 compensation network with slope compensation.

By default, the VBOOST switching frequency is derived from the internal oscillator and can be synchronized with an external frequency signal applied on FIN input pin. The change from internal oscillator to external clock or vice versa is controlled by I^2C .


Overcurrent detection and thermal shutdown are implemented to protect the internal MOSFET. If an overcurrent is detected after the LS minimum TON time, the LS is turned off and is turned on again at the next rising edge of the switching clock. The overcurrent induces a duty cycle reduction that could lead to the output voltage gradually dropping, causing an undervoltage condition.

Because the current limitation is on the input current, the example in <u>Table 15</u> summarizes the expected output current capability depending on VPRE and VBOOST voltage configurations for VBSTILIM_OTP[1:0] = 01.

VPRE	VBOOST	IBOOST_OUT			
3.3 V	5 V	800 mA			
4.4 V	5 V	1 A			

 Table 15. Output current example

An overvoltage protection is implemented on the BOOST_LS pin. When V_{BOOST_OV} is detected during two consecutive turn-on cycles, VBOOST is disabled. An I²C command is required to enable it again. This monitoring is not safety related.

11.2 Application schematic

Figure 15. BOOST schematic

Select a Schottky diode for D_{BOOST} to limit the impact on the SMPS efficiency.

11.3 Compensation network and stability

The internal compensation network, made with R_{COMP} , C_{COMP} , and C_{HF} is optimized for the best compromise between stability and transient response. Depending on the current limit, the recommend settings should be:

For 3 A current limitation setting :

- Rcomp= 500 K, Ccomp= 125 pF, Slew rate= 500 V/µs, Slope Compensation= 67 mV/ $\mu s.$

For 2 A current limitation setting:

- Rcomp= 750 K, Ccomp= 125 pF, Slew rate= 500 V/µs, Slope Compensation= 160 mV/ $\mu s.$

11.4 Electrical characteristics

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground. Typical values based on TA = 25 °C.

Multi-Output PMIC with SMPS and LDO

Symbol	Parameter	Min	Тур	Мах	Unit
VBOOST	·				
			4.5	_	V
	Output Voltage (VBSTV_OTP[3:0] configuration)	_	5	_	V
		_	5.09	_	V
V _{BOOST}		_	5.19	_	V
		_	5.4	-	V
		_	5.74	—	V
		_	6.0	_	V
V _{BOOSTACC}	Output Voltage Accuracy	-3	_	3	%
VBOOST_SOFT_START	Soft start (from 10% to 90%)	250	500	750	μs
V _{BOOST_UVH}	Under voltage threshold high	3.3	—	3.7	V
T _{BOOST_UVH}	V _{BOOST_UVH} filtering time	6	10	15	μs
OV _{BOOST}	Over voltage protection threshold	7.4	_	7.9	V
V _{BOOST_SW}	Switching Frequency Range	_	2.22	-	MHz
L _{BOOST}	Inductor for V _{BOOST_SW} =2.22 MHz	_	4.7	_	μH
C _{OUT_BOOST}	Effective output capacitor	44	-	66	μF
V _{BOOST_LOAD_REG1}	Transient load regulation (C_{OUT_BOOST} = 44 μF , from 100 mA to 1 A, di/dt = 300 mA/ μs)	-10	_	10	%
VBOOST_LOAD_REG2	Transient load regulation (C _{OUT_BOOST} = 44 μ F, from 50 mA to 100 mA, di/dt = 300 mA/ μ s)	-1	_	1	%
VBOOST_LOAD_REG3	Transient load regulation (C_{OUT_BOOST} = 44 µF, from 100 mA to 200 mA, di/dt = 300 mA/µs)	-2	_	2	%
VBOOST_LOAD_REG4	Transient load regulation (C_{OUT_BOOST} = 44 µF, from 100 mA to 500 mA, di/dt = 300 mA/µs)	-3.5	_	3.5	%
	Inductor peak current limitation range, VBSTILIM_OTP[1:0] = 01	1.5	2	2.5	А
I _{LIM_BOOST}	Inductor peak current limitation range, VBSTILIM_OTP[1:0] = 10	2.25	3	3.75	А
T _{BOOST_ON_MIN}	LS minimum ON time, VBSTTONTIME_OTP [1:0] = 00	40	_	80	ns
R _{BOOST_RON}	LS NMOS RDSon	_	150	280	mΩ
T _{BOOST_SR}	Switching output slew rate (OTP configuration + I ² C), VBSTSR_OTP [1:0] default + VBSTSR[1:0]	_	500	_	V/µs
gmEA	Error Amplifier transconductance	3.5	7	10	S
N/	Slope Compensation (default value for 2 A current limit) VBSTSC_OTP[4:0] = 00110	_	160	_	mV/µs
V _{BOOST_SLOPE}	Slope Compensation (default value for 3 A current limit) VBSTSC_OTP[4:0] = 01111	_	67	_	mV/µs
TSD _{BOOST}	Thermal shutdown threshold	155	—	—	°C
T _{BOOST_TSD}	Thermal shutdown filtering time	_	20	30	μs

Table 16. Electrical characteristics

VR5510 Product data sheet

11.5 VBOOST not populated

VBOOST may not be required when VPRE is configured at greater than 3.9 V. In this case, the external VBOOST components can be unpopulated to reduce the number of items in the bill of materials. The BOOSTEN_OTP bit (CFG_BOOST_2_OTP register) must be programmed to 0 and the VBOOST pin must be pulled up to VPRE. BOOST_LS pin must be left open.

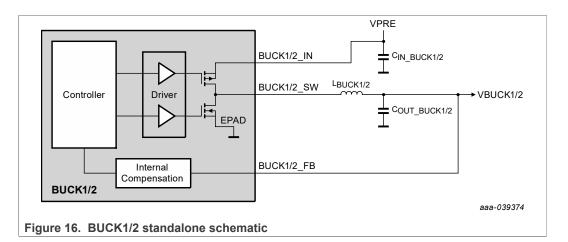
VBOOST must be used to supply VBOS when VPRE is configured below 3.9 V.

12 Low Voltage Buck: BUCK1 and BUCK2

12.1 Functional description

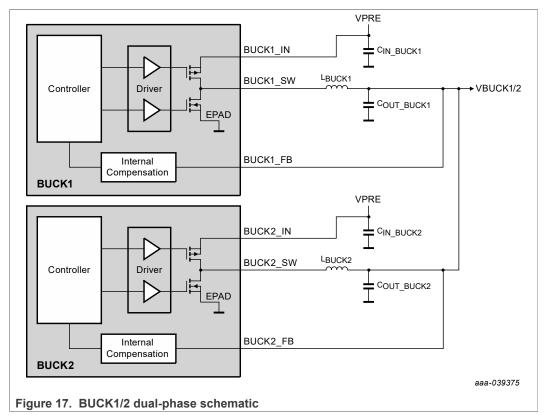
BUCK1 and BUCK2 blocks are low voltage, synchronous, valley current mode buck converters with integrated HS PMOS and LS NMOS. BUCK1 and BUCK2 work in force PWM in Normal mode of operation and in PFM in Standby mode. The output voltage is configurable by OTP through the BUCK1V_OTP [7:0] bit field (CFG_BUCK1_1_OTP register) or the BUCK2V_OTP [7:0] bit field (CFG_BUCK2_1_OTP register) from 0.4 V to 1.8 V, the switching frequency is 2.22 MHz and the output current is limited to a maximum of 3.6 A peak. The input of the BUCK1 and BUCK2 blocks must be connected to the output of VPRE. Stability is ensured by an internal Type 2 compensation network with slope compensation.

By default, BUCK1 and BUCK2 switching frequencies are derived from the internal oscillator and can be synchronized with an external frequency signal applied on FIN input pin. The change from internal oscillator to external clock or vice versa is controlled by l^2C .


BUCK1 and BUCK2 can work independently or in dual-phase mode to double the output current capability. Dual-phase mode is configured by OTP. When BUCK1 and BUCK2 are used in dual-phase, they must have the same output voltage configuration. Any action (such as TSD, OV or being disabled by I^2C) on BUCK1 affects BUCK2 and vice versa.

Overcurrent detection and thermal shutdown are implemented on BUCK1 and BUCK2 to protect the internal MOSFETs. An overcurrent induces a duty cycle reduction that could lead to the output voltage gradually dropping, causing an under voltage condition.

Use soft ramp when the regulators are enabled or disabled with SVS control. Programmable phase shift control is implemented (see <u>Section 18 "Clock Management"</u>).


12.2 Application schematic: single phase mode

In this configuration, BUCK1 and BUCK2 are configured as independent outputs. Each output is configured and controlled independently by I²C.

12.3 Application schematic: dual-phase mode

In this configuration, BUCK1 and BUCK2 are configured in dual-phase mode to double the output current capability. Dual-phase mode is enabled by OTP via the VB12MULTIPH_OTP bit (CFG_BUCK1_2_OTP register). The PCB layout of BUCK1 and BUCK2 must be symmetric for optimum EMC performance.

12.4 Compensation network and stability

The internal compensation network ensures the stability and the transient response performance of the buck converter. The error amplifier gain is configurable with the

Product data sheet

BUCKx_COMP_OTP[2:0] bitfields (CFG_BUCK3_2_OTP register) for each BUCK 1 and BUCK2 regulator. Use the default value, which should cover most use cases.

12.5 Electrical characteristics

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground. Typical values based on TA = 25 °C.

Symbol	Parameter	Min	Тур	Мах	Unit
BUCK1 and BUCI	(2				
V _{BUCK12_IN}	Input voltage range	2.5	_	5.5	V
V _{BUCK12}	Output voltage, Configurable by OTP, 6.25 mV resolution (<1.5 V)	0.4	—	1.8	V
I _{BUCK12}	Recommended DC output current capability (one phase)	-	2.5	—	А
V _{BUCK12ACC}	Output voltage accuracy (0.4 V< V _{BUCK12} < 0.7 V), PWM	-10	_	10	mV
	Output voltage accuracy (0.7 V \leq V _{BUCK12} \leq 0.8 V), PWM	-8	_	8	mV
	Output voltage accuracy (0.8 V< V _{BUCK12} ≤ 1.5 V), PWM	-1.5	_	1.5	%
	Output voltage accuracy (V _{BUCK12} = 1.8 V), PWM	-2	-	2	%
	Output voltage accuracy (0.4 V< V _{BUCK12} < 1.5 V), PFM	- 30	-	30	mV
	Output voltage accuracy (V _{BUCK12} = 1.8 V), PFM	- 40	-	40	mV
I _{BUCK12_Q}	Quiescent Current, PFM Mode, VSUP = 12 V	_	12	_	μA
V _{BUCK12_SW}	Switching Frequency Range	2.1	2.22	2.35	MHz
L _{BUCK12}	Inductor for V _{BUCK12_SW} =2.22 MHz	-	1.0	—	μH
C _{OUT_BUCK12}	Effective output capacitor (for 1 phase)	35	-	160	μF
	Output decoupling capacitor	-	0.1	—	μF
C _{IN_BUCK12}	Effective input capacitor (one each close to BUCK1_IN and BUCK2_IN pins)	4.23	_	_	μF
	Input decoupling capacitor (one each close to BUCK1_IN and BUCK2_IN pins)	-	0.1	_	μF
VBUCK12_TLR	Transient Load Regulation for V_{BUCK12} <1.2 V (Cout = 44 µF, from 200 mA to 1 A, di/dt = 2 A/µs) single phase (Cout = 44 µF, from 400 mA to 2 A, di/dt = 4 A/µs) dual phase	-25	_	+25	mV
V _{BUCK12_TLR}	Transient Load Regulation for $V_{BUCK12} > 1.2 V$ (Cout = 44 µF, from 200 mA to 1 A, di/dt = 2 A/µs) single phase (Cout = 44 µF, from 400 mA to 2 A, di/dt = 4 A/µs) dual phase	-3	_	+3	%
ILIM_BUCK12	Inductor peak current limitation range for one phase (OTP configuration)	2.4	3	3.7	А
		3.6	4.5	5.45	А
V _{BUCK12_DVS_UP}	DVS Ramp up Speed , BUCK12DVS_RAMP_OTP[1:0] = 00	9.5	15.6	23.6	mV/µs
(0.4 V to 1.5 V)	DVS Ramp up Speed , BUCK12DVS_RAMP_OTP[1:0] = 01	4.8	7.8	11.8	mV/µs
	DVS Ramp up Speed , BUCK12DVS_RAMP_OTP[1:0] = 10	1.56	2.6	3.94	mV/µs
	DVS Ramp up Speed , BUCK12DVS_RAMP_OTP[1:0] = 11	1.33	2.23	3.38	mV/µs

Table 17. Electrical characteristics

VR5510

© NXP B.V. 2021. All rights reserved.

Symbol	Parameter	Min	Тур	Мах	Unit
V _{BUCK12_DVS_UP}	DVS Ramp up Speed , BUCK12DVS_RAMP_OTP[1:0] = 00	11.87	19.53	29.5	mV/µs
(1.8 V)	DVS Ramp up Speed , BUCK12DVS_RAMP_OTP[1:0] = 01	6	9.76	14.75	mV/µs
	DVS Ramp up Speed , BUCK12DVS_RAMP_OTP[1:0] = 10	1.95	3.25	4.92	mV/µs
	DVS Ramp up Speed , BUCK12DVS_RAMP_OTP[1:0] = 11	1.67	2.78	4.22	mV/µs
V _{BUCK12_DVS_DOWN}	DVS Ramp down Speed , BUCK12DVS_RAMP_OTP[1:0] = 00	6.3	10.41	15.8	mV/µs
(0.4 V to 1.5 V)	DVS Ramp down Speed , BUCK12DVS_RAMP_OTP[1:0] = 01	3.1	5.2	7.9	mV/µs
	DVS Ramp down Speed , BUCK12DVS_RAMP_OTP[1:0] = 10	1.56	2.6	3.94	mV/µs
	DVS Ramp down Speed , BUCK12DVS_RAMP_OTP[1:0] = 11	1.33	2.23	3.38	mV/µs
V _{BUCK12_DVS_DOWN}	DVS Ramp down Speed , BUCK12DVS_RAMP_OTP[1:0] = 00	7.87	13.02	19.75	mV/µs
(1.8 V)	DVS Ramp down Speed , BUCK12DVS_RAMP_OTP[1:0] = 01	3.87	6.51	9.87	mV/µs
	DVS Ramp down Speed , BUCK12DVS_RAMP_OTP[1:0] = 10	1.95	3.25	4.92	mV/µs
	DVS Ramp down Speed , BUCK12DVS_RAMP_OTP[1:0] = 11	1.67	2.78	4.22	mV/µs
T _{BUCK12_OFF_MIN}	HS minimum OFF time	9	27	54	ns
R _{BUCK12_HS_RON}	HS PMOS RDSon, 3.6 Vgs, Tj = 125 C	_		135	mΩ
R _{BUCK12_LS_RON}	LS NMOS RDSon, 3.6 Vgs, Tj = 125 C	_		80	mΩ
R _{BUCK12_DISch}	Discharge Resistance (when BUCK1,2 is disabled and ramp down completed)	_	20	40	Ω
TSD _{BUCK12}	Thermal shutdown threshold	155		_	°C
T _{BUCK12_TSD}	Thermal shutdown filtering time	-	20	30	μs

Table 17. Electrical characteristics...continued

12.6 BUCK1 and BUCK2 efficiency

<u>Table 18</u> shows BUCK1 and BUCK2 efficiency versus current load based on a typical external component and a 4.1 V VPRE voltage. For external components with characteristics different from the ones shown below, use the VR5510 Power Calculator tool to recalculate the theoretical efficiency. The real efficiency must be verified by measurement at the application level.

VR5510 Product data sheet

Multi-Output PMIC with SMPS and LDO

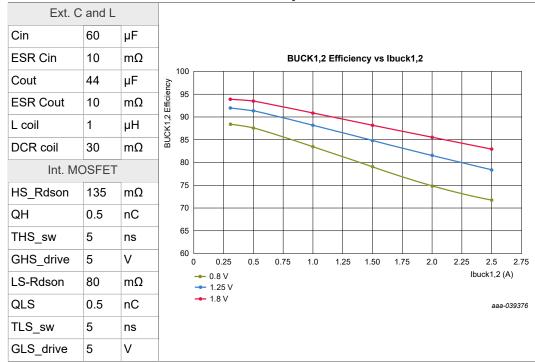
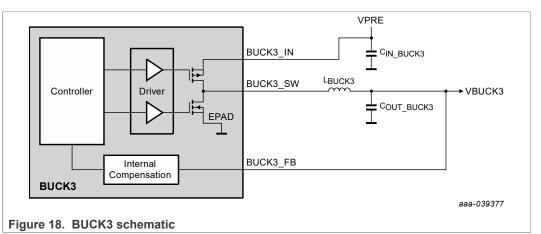


 Table 18. BUCK1 and BUCK2 theoretical efficiency

13 Low Voltage Buck: BUCK3

13.1 Functional description


BUCK3 is a low voltage, synchronous, peak current mode buck converter with integrated HS PMOS and LS NMOS. BUCK3 works in force PWM in Normal mode and in PFM in the Standby mode. The output voltage is configurable by OTP through the BUCK3V_OTP [4:0] bit field (CFG_BUCK3_1_OTP) from 1.0 V to 4.1 V, the switching frequency is 2.22 MHz, and the output current is limited to 3.6 A peak. The input of BUCK3 must be connected to the output of VPRE. Stability is ensured by an internal Type 2 compensation network with slope compensation.

By default, the BUCK3 switching frequency is derived from the internal oscillator and can be synchronized with an external frequency signal applied on FIN input pin. The change from internal oscillator to external clock or vice versa is controlled by l^2C .

Overcurrent detection and thermal shutdown are implemented on BUCK3 to protect the internal MOSFETs. An overcurrent induces a duty cycle reduction that could lead to the output voltage gradually dropping, causing an undervoltage condition.

Programmable phase shift control is implemented (see Section 18 "Clock Management").

13.2 Application schematic

13.3 Compensation network and stability

The internal compensation network ensures the stability and the transient response performance of the buck converter.

Use the default values for BUCK3_GM_OTP bit (CFG_ BUCK2_ 2_OTP register) and BUCK3_RS_OTP, which should cover most use cases.

BUCK3_LSELECT_OTP[1:0] (CFG_ BUCK3_ 1_OTP register) scales the slope compensation and the Zero Cross Detection according to inductor value. The recommended inductor value for BUCK3 is1.0 μ H.

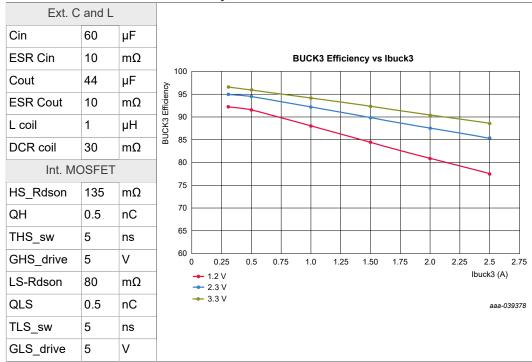
13.4 Electrical characteristics

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground. Typical values based on TA = 25 °C.

Table 19.	Electrical	characteristics
-----------	------------	-----------------

Symbol	Parameter	Min	Тур	Мах	Unit
BUCK3					
V _{BUCK3_IN}	Input voltage range	2.5	_	5.5	V
V _{BUCK3}	Output voltage, OTP settings available: 1.0 V, 1.1 V, 1.2 V, 1.25 V, 1.3 V, 1.35 V, 1.5 V, 1.6 V, 1.8 V 1.85 V, 2.0 V, 2.1 V, 2.15 V, 2.25 V, 2.3 V, 2.4 V, 2.5 V, 2.8 V, 3.15 V, 3.2 V, 3.25 V, 3.3 V, 3.35 V, 3.4 V, 3.5 V, 3.8 V, 4.0 V, 4.1 V	1.0	_	4.1	V
I _{вискз}	Recommended DC output current capability	_	2.5	_	А
	Output Voltage Accuracy, PWM	-2	-	2	%
V _{BUCK3ACC}	Output Voltage Accuracy, PWM, 1.1 V setting	-1	-	1	%
	Output Voltage Accuracy, PFM	-3	—	3	%
I _{BUCK3_Q}	Quiescent Current, PFM Mode, VSUP = 12 V	_	12	_	μA
V _{BUCK3_SW}	Switching Frequency Range	2.1	2.22	2.35	MHz

Symbol	Parameter	Min	Тур	Max	Unit
L _{BUCK3}	Inductor for V _{BUCK3_SW} =2.22 MHz	_	1.0	_	μH
C	Effective output capacitor	35		132	μF
C _{OUT_BUCK3}	Output decoupling capacitor	_	0.1		μF
C	Effective input capacitor (close to BUCK3_IN pin)	4.23		_	μF
C _{IN_BUCK3}	Input decoupling capacitor (close to BUCK3_IN pin)	_	0.1	_	μF
V _{BUCK3_TLR}	Transient Load Regulation (Cout = 44 μ F, from 200 mA to 1 A, di/dt = 2 A/ μ s)	-50	_	50	mV
I _{LIM_BUCK3}	Inductor peak current limitation range	2.4	3	3.7	А
	(OTP configuration)	3.6	4.5	5.45	А
T _{BUCK3_ON_MIN}	HS minimum ON time	5	50	80	ns
	DVS Ramp up/down Speed , BUCK3_RAMP_OTP[1:0] = 00	6	10.42	15	mV/µs
N/	DVS Ramp up/down Speed , BUCK3_RAMP_OTP[1:0] = 01	2	3.47	5	mV/µs
VBUCK3_DVS_UP_DOWN	DVS Ramp up/down Speed , BUCK3_RAMP_OTP[1:0] = 10	1.5	2.6	3.5	mV/µs
	DVS Ramp up/down Speed , BUCK3_RAMP_OTP[1:0] = 11	1	2.08	3	mV/µs
VBUCK3_SOFT_START	Soft start (from 10% to 90%)	_	_	200	μs
R _{BUCK3_HS_RON}	HS PMOS RDSon	_	_	135	mΩ
R _{BUCK3_LS_RON}	LS NMOS RDSon	_		80	mΩ
R _{dischBUCK3}	Discharge Resistance (when BUCK3 is disabled)	_	20	40	Ω
TSD _{BUCK3}	Thermal shutdown threshold	155	_	_	°C
T _{BUCK3_TSD}	Thermal shutdown filtering time	_	20	30	μs

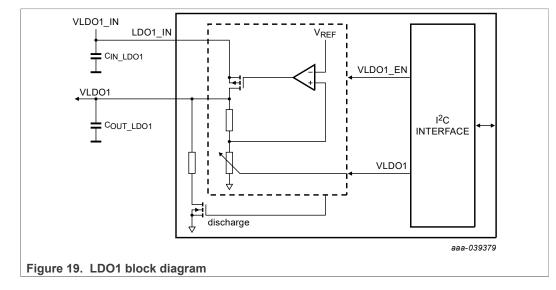

Table 19. Electrical characteristics...continued

13.5 BUCK3 efficiency

<u>Table 20</u> shows BUCK3 efficiency versus current load based on a typical external component and a 4.1 V VPRE voltage. For external components with characteristics different from the ones shown below, use the VR5510 Power Calculator tool to recalculate the theoretical efficiency. The real efficiency must be verified by measurement at the application level.

Multi-Output PMIC with SMPS and LDO

 Table 20.
 BUCK3 theoretical efficiency


14 Linear Voltage Regulator: LDO1

14.1 Functional description

LDO1 is a medium voltage linear regulator. The output voltage is configurable from 1.1 V to 5 V by OTP through the LDO1V_OTP [2:0] bit field (CFG_LDO_ALL2_OTP register). A minimum voltage drop is required, depending on the output current capability (0.5 V for 150 mA and 1 V for 400 mA). The LDO current capability is linear with the voltage drop and can be estimated to I(mA) = 500 x V_{LDO1_DROP} -100 for an intermediate voltage drop between 0.5 V and 1 V.

Overcurrent detection and a thermal shutdown are implemented on LDO1 to protect the internal pass device.

VR5510 Product data sheet

14.2 Application schematics

14.3 Electrical characteristics

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground. Typical values based on TA = 25 °C.

Symbol	Parameter	Min	Тур	Max	Unit
LDO1		1			_
V _{LDO1_IN}	Input voltage range	2.5	_	6.5	V
V _{LDO1}	Output voltage, OTP settings available: 1.1 V, 1.2 V, 1.6 V, 1.8 V, 2.5 V, 2.8 V, 3.3 V, 5.0 V	1.1	_	5.0	V
V _{LDO1_ACC}	Output Voltage accuracy	-2	—	+2	%
VLDO1_DROP_150	Minimum Voltage drop for 150 mA current capability	0.5	—	_	V
V _{LDO1_DROP_400}	Minimum Voltage drop for 400 mA current capability	1.0	—	_	V
I _{LDO1_Q}	Quiescent Current, No load, VSUP = 12 V	_	40	_	μA
C _{IN_LDO1}	Input capacitor (close to LDO1_IN pin)	1.0	_	_	μF
C _{OUT_LDO1_150}	Effective output capacitor, 150 mA current capability	3	_	100	μF
C _{OUT_LDO1_400}	Effective output capacitor, 400 mA current capability	4.5	—	100	μF
C _{OUT_LDO1}	Output decoupling capacitor	0.1	—	_	μF
V _{LDO1_LTR_150}	Transient Load Regulation (from 10 mA to 150 mA in 2 μs)	-4	_	+4	%
V _{LDO1_LTR_400}	Transient Load Regulation (from 10 mA to 400 mA in 4 μs)	-5	_	+5	%
V _{LDO1_LR}	Line Regulation		-	0.5	%
VLDO1_ILIM_150	Current limitation, 150 mA current capability	180	280	500	mA
VLDO1_ILIM_400	Current limitation, 400 mA current capability	460	560	850	mA

VR5510

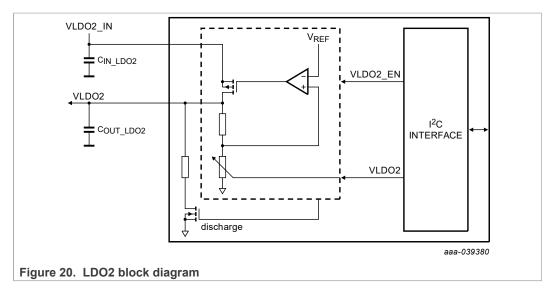
© NXP B.V. 2021. All rights reserved.

Symbol	Parameter	Min	Тур	Мах	Unit
V _{LDO1_SOFT_START}	Soft start (Enable to 90%)	0.7	1	1.3	ms
R _{LDO1_DISCH}	Discharge Resistance (when LDO1 is disabled)	_	20	40	Ω
TSD _{LDO1}	Thermal shutdown threshold	155	_	—	°C
T _{LDO1_TSD}	Thermal shutdown filtering time	—	20	30	μs

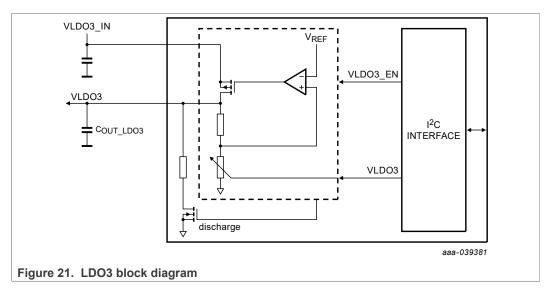
 Table 21. Electrical characteristics...continued

15 Linear Voltage Regulator: LDO2, LDO3

15.1 Functional description


The LDO2 and LDO3 blocks are linear voltage regulators. The output voltage is configurable from 1.5 V to 5 V by OTP through the LDO2V_OTP [3:0] bit field (CFG_LDO_ALL2_OTP register) and the LDO3V_OTP [3:0] (CFG_LDO_ALL1_OTP registers).

LDO2 and LDO3 can be programmed to operate in load switch mode by OTP through the LDO2_LS_OTP and LDO3_LS_OTP bits (both in the CFG_ SEQ_ 1_OTP).


In load switch mode, the input supply must be kept within the LDO operating input voltage range (2.5 V to 5.5 V).

The LDO2 and LDO3 input supplies are externally connected to VPRE. Overcurrent detection and a thermal shutdown are implemented on LDO2 and LDO3 to protect the internal pass device.

15.2 Application schematics

Multi-Output PMIC with SMPS and LDO

15.3 Electrical characteristics

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground. Typical values based on TA = 25 °C.

Table 22.	Electrical	characteristics

Symbol	Parameter	Min	Тур	Max	Unit
LDO2 and LDO3					
V _{LDO23_IN}	Input voltage range (1.5 V < VLDO23 < 2.25 V)	2.5	_	5.5	V
V _{LDO23_IN}	Input voltage range (2.25 V < VLDO23 < 5 V)	VLDO23 + 0.25	_	5.5	V
V _{LDO23}	Output voltage, OTP settings available: 1.5 V, 1.6 V, 1.8 V, 1.85 V, 2.15 V, 2.5 V, 2.8 V, 3.0 V, 3.1 V, 3.15 V, 3.2 V, 3.3 V, 3.35 V, 4 V, 4.9 V, 5.0 V	1.5	_	5.0	V
V _{LDO23_ACC}	Output Voltage accuracy, 400 mA current capability	-2	_	+2	%
I _{LDO23_Q}	Quiescent Current, No load, VSUP = 12 V	_	7	_	μA
C _{IN_LDO23}	Input capacitor (close to LDO23_IN pin)	1.0	_	_	μF
C _{OUT_LDO23}	Effective output capacitor	3.3	_	100	μF
C _{OUT_LDO23}	Output decoupling capacitor	_	0.1	_	μF
V _{LDO23_LTR}	Transient Load Regulation (from 10 mA to 200 mA in 2 us)	-6	_	6	%
V _{LDO23_LR}	Line Regulation, V_{LDOXIN} = 2.5 V, 10 us	-5	_	5	%
V _{LDO23_ILIM}	Current limitation, LDO mode	450	850	1475	mA
V _{LDO23_ILIM_SWITCH}	Current limitation, Switch mode	450	850	1475	mA
R _{LDO23_RON}	LDO23 RDSon (drop-out / load switch)	—	—	220	mΩ
V _{LDO23_SOFT_START}	Soft start (Enable to 90%)	130	220	360	μs
R _{LDO23_DISCH}	Discharge Resistance (when LDO2,3 is disabled)	_	20	40	Ω

VR5510

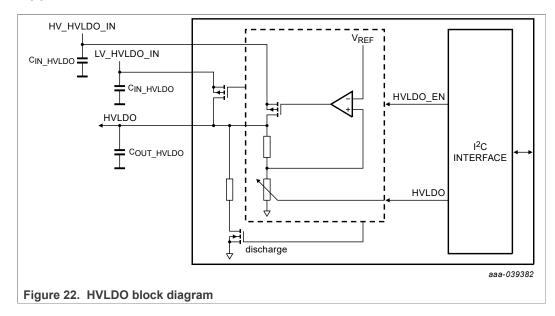
© NXP B.V. 2021. All rights reserved.

Symbol	Parameter	Min	Тур	Max	Unit
TSD _{LDO23}	Thermal shutdown threshold	155	_	_	°C
T _{LDO23_TSD}	Thermal shutdown filtering time		20	30	μs

Table 22. Electrical characteristics...continued

16 Linear Voltage Regulator: HVLDO

16.1 Functional description


HVLDO is a high-voltage, low-power, low drop-out linear regulator. The regulator can be programmed via the HVLDO_TRANS_MODE_OTP bit (CFG_SEQ_4_OTP register) to operate as a load switch in Normal mode and an LDO in Standby mode or to operate as an LDO all of the time. The output voltage is OTP-configurable to either 0.8 V or 3.3 V through the HVLDOV_OTP [1:0] bit field (CFG_SEQ_2_OTP register).

In Deep Sleep mode, HVLDO is the only supply enabled. In that case, HVLDO must be set to 3.3 V.

HV_HVLDO_IN is connected to either VPRE or VBAT and LV_HVLDO_IN can be connected to either VBUCK1/2 or VPRE.

If HVLDO is enabled in Normal mode and configured as disabled in Standby mode, then the HVLDO cannot automatically restart when the device wakes up from STBY mode. In that case, it must be enabled via I^2C .

16.2 Application schematics

16.3 Electrical characteristics

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground. Typical values based on TA = 25 °C.

Product data sheet

Multi-Output PMIC with SMPS and LDO

Symbol	Parameter	Min	Тур	Max	Unit
HVLDO	·				
V _{HVLDO_IN}	Input voltage range, HV_HVLDO_IN, HVLDO = 0.8 V	2.7	_	60	V
V _{HVLDO_IN}	Input voltage range, HV_HVLDO_IN, HVLDO = 3.3 V	3.8		60	V
V _{HVLDO_IN}	Input voltage range, LV_HVLDO_IN, Load Switch Input (0.8 VOUT)	0.69	_	0.88	V
V _{HVLDO_IN}	Input voltage range, LV_HVLDO_IN, Load Switch Input (3.3 VOUT)	2.97	_	5.5	V
V	Output Voltage accuracy in LDO mode, 0.8 V	0.784	0.8	0.816	V
V _{HVLDO_ACC}	Output Voltage accuracy in LDO mode, 3.3 V	3.2	3.3	3.4	V
I _{HVLDO_Q}	Quiescent Current, No load, VSUP = 12 V	_	10	_	μA
C _{IN_HVLDO}	Effective input capacitor (close to HVLDO_IN pin)	_	1.0	_	μF
C _{OUT_HVLDO}	Effective output capacitor	2.2	_	_	μF
	Output decoupling capacitor	_	0.1	_	μF
V _{HVLDO_LTR}	Transient Load Regulation, Low Power LDO to Normal Switch Mode	-4	_	4	%
V _{HVLDO_ILIM_LDO}	Current limitation, LDO Mode, 10 mA capability	11	_	40	mA
V _{HVLDO_ILIM_SW}	Current limitation, Switch Mode, 100 mA capability	110	_	350	mA
V _{HVLDO_SOFT_START}	Soft start (Enable to 90%), Switch Mode	_	_	250	μs
V _{HVLDO_SOFT_START}	Soft start (Enable to 90%), LDO Mode	_	_	1	ms
D	ON Resistance, Switch Mode, 0.8 V	_	_	1	Ω
R _{HVLDO_ON}	ON Resistance, Switch Mode, 3.3 V	_	_	1.5	Ω
R _{HVLDO_DISCH_DIS}	Discharge Resistance (when HVLDO is disabled)	-	60	100	Ω
TSD _{HVLDO}	Thermal shutdown threshold	155	_	_	°C
T _{HVLDO_TSD}	Thermal shutdown filtering time	_	20	30	μs

Table 23. Electrical characteristics

17 Thermal Management

17.1 Functional description

The VR5510 device has an independent thermal monitor sensor for each regulator. When a thermal shutdown threshold is exceeded, each monitor can be programmed to simply shutdown the regulator or to shutdown the regulator and transition the device into the Deep Fail-safe state.

When the regulator shutdown only setting is selected, the regulator starts up automatically when the temperature goes down.

At each startup, a BIST is run to assure that each TSD sensor is not stuck high or low. The results can be checked in the TSD_BIST_ERR_FLG bit (M_INT_MASK2 register).

A thermal sensor at the center of the die generates interrupts for the MCU whenever the temperature exceeds a certain threshold. The center die temperature threshold is programmable through the DIE_CENTER_TEMP_OTP [2:0] bit field (CFG_SM_2_OTP register).

Table 24. Center die temperature thresholds

DIE_CENTER_TEMP_OTP	Threshold (±10 °C)
000	75 °C
001	90 °C
010	105 °C
011	120 °C
100	135 °C
101	150 °C

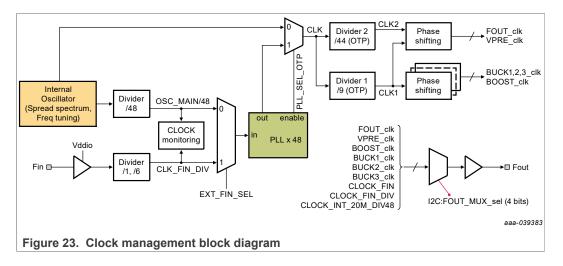
17.2 Electrical characteristics

TA = -40 °C to 125 °C, unless otherwise specified.

Table 25. Electrical characteristics

Symbol	Parameter	Min	Тур	Max	Unit
Thermal Monitor					
TSD _{REG}	Thermal shutdown threshold for all independent thermal shutdown	155		175	°C
TSD _{HYST}	Thermal shutdown threshold hysteresis	1	—	10	°C
T _{TSD}	Thermal shutdown filtering time	—	20	30	μs

18 Clock Management


18.1 Clock description

The clock management block consists of a 20 MHz internal oscillator, a low power 100 kHz to 600 kHz oscillator, a Phase Locked Loop (PLL), and multiple dividers. This block generates the clock used by the internal digital state machines, by the switching regulators, and for external clock synchronization.

The internal oscillator runs at 20 MHz by default after startup. The frequency is programmable by I^2C . A spread spectrum feature can be activated by I^2C to mitigate the effects of EMI by spreading the energy of the oscillator's fundamental frequency.

The VPRE switching frequency comes from CLK2 (455 kHz) or CLK1 (2.22 MHz). The BUCK1, BUCK2, BUCK3, and BOOST switching frequency comes from CLK1 (2.22 MHz). The switching regulators can be synchronized with an external frequency coming from the FIN pin. A dedicated watchdog monitor verifies and reports the correct FIN frequency range. Different clocks can be sent to the FOUT pin to synchronize an external IC or for diagnostic purposes.

The device selects the internal clock if the SYNCIN signal is lost, but the PLL_LOCK bit randomly asserts low, or remains high when repeatedly applying and removing SYNCIN.

18.2 Phase shifting

To reduce peak current and improve EMC performance, the clocks of the switching regulators (VPRE_clk, BOOST_clk, BUCK1_clk, BUCK2_clk, and BUCK3_clk) can be delayed to prevent all regulators from turning on at the same time.

Each clock of each regulator can be shifted from one to seven CLK clock cycles running at 20 MHz, which corresponds to 50 ns. The phase shift configuration is done by using VPRE_PH_OTP[2:0], VBST_PH_OTP[2:0], BUCK1_PH_OTP[2:0] (CFG_ CLOCK_ 2_OTP register), BUCK2_PH_OTP[2:0] (CFG_ CLOCK_ 3_OTP register), and BUCK3_PH_OTP[2:0] (CFG_ CLOCK_ 3_OTP register).

VPRE and BUCK3 have a peak current detection architecture. The PWM synchronizes the turning on of the High Side switch. BUCK1 and BUCK2 have a valley current detection architecture. The PWM synchronizes the turning on of the Low Side switch.

18.3 Manual frequency tuning

The internal oscillator frequency (20 MHz by default) can be programmed by I^2C commands to frequencies ranging from 16 MHz to 24 MHz in 1 MHz steps. The oscillator's functionality is guaranteed for frequency increments of one step at a time in either direction, with a minimum of 10 µs between steps. For any unused code in the CLK_INT_FREQ [3:0] bit field (M_CLOCK1 register), the internal oscillator is set at the default 20 MHz frequency.

To change the internal oscillator frequency from 20 MHz to 24 MHz, four I^2C commands are required with a 10 µs wait time between each command. To change the internal oscillator frequency from 24 MHz to 16 MHz, eight I^2C commands are required with a 10 µs wait time between each command.

CLK_INT_FREQ [3:0]	Oscillator Frequency [MHz]
0000 (default)	20
0001	21
0010	22
0011	23

Table 26.	Manual	Frequency	Tuning	configuration
-----------	--------	-----------	--------	---------------

CLK_INT_FREQ [3:0]	Oscillator Frequency [MHz]
0100	24
1001	16
1010	17
1011	18
1100	19
Reset condition	POR

Table 26. Manual Frequency Tuning configuration...continued

18.4 Spread spectrum

The internal oscillator can be modulated with a triangular carrier frequency of 23.15 kHz or 92.6 kHz with ±5% deviation from the oscillator frequency. The spread spectrum feature can be activated by using I²C commands to set the MOD_EN bit (M_CLOCK1 register). The carrier frequency can be selected by I²C with the MOD_CONF bit (M_CLOCK1 register). By default, the spread spectrum is disabled. The spread spectrum and the manual frequency tuning functions cannot be used at the same time.

The main purpose of the spread spectrum is to improve the EMC performance by spreading the energy of the internal oscillator and VPRE frequency on the VBAT frequency spectrum. For best performance, select a 23.15 kHz carrier frequency when VPRE is configured at 455 kHz and a 92.6 kHz carrier frequency when VPRE is configured at 2.22 MHz.

18.5 External clock synchronization

The PLL must be enabled with the PLL_SEL_OTP bit (CFG_CLOCK_4_OTP register) to synchronize the switching regulators with an external frequency coming from the FIN pin. To assure that the PLL output clock (CLK) remains in the digital blocks' 16 MHz to 24 MHz working range, the FIN pin accepts two frequency ranges selectable by the FIN_DIV bit (M_CLOCK1 register). When FIN_DIV is set to zero, the input frequency range must be between 333 kHz and 500 kHz. When FIN_DIV is set to one, the input frequency range must be between 2 MHz and 3 MHz. If FIN is out of range, CLK moves back to the internal oscillator and reports the error through the FIN_CLKWD_OK bit (M_FLAG3 register).

After the FIN divider has been configured by the FIN_DIV bit, the FIN clock is routed to the PLL input by the EXT_FIN_SEL bit (M_CLOCK1 register). The PLL output clock (CLK) changes from the internal oscillator to the FIN external clock depending on the EXT_FIN_SEL bit setting. The configuration procedure is FIN_DIV first, then apply FIN, and finally set EXT_FIN_SEL.

The FOUT pin can be used to synchronize an external device with the VR5510. The frequency sent to FOUT is selected by using I^2C commands to set the FOUT_MUX_SEL [3:0] bits (M_CLOCK1 register) according to Table 27.

Product data sheet

FOUT_MUX_SEL [3:0]	FOUT Multiplexer selection
0000 (default)	No signal, FOUT is low
0001	VPRE_clk
0010	BOOST_clk
0011	BUCK1_clk
0100	BUCK2_clk
0101	BUCK3_clk
0110	FOUT_clk
0111	CLK20M_MAIN_DIV48
1000	CLK20M_FS_DIV48
1001	CLK_FIN_DIV
Others	No signal, FOUT is low
Reset condition	POR

18.6 Low power oscillator

The low-power oscillator operates in Standby mode only. The main purpose of this block is to reduce the current consumption of the device during Standby mode. The oscillator frequency is typically 100 kHz with an option to choose either 300 kHz or 600 kHz, depending on the current load expected in Standby mode.

For DDR Self Refresh mode, use the 600 kHz setting.

The frequency setting can be changed using the LOW_POWER_CLK [1:0] bit field (M_CLOCK2 register). However, the I^2C command to change the frequency setting must be sent at least 40 µs before going into Standby mode.

Table 27 FOUT multipleyer coloction

LOW_POWER_CLK [1:0]	Low power oscillator frequency
00 / 01 (default)	100 kHz
10	300 kHz
11	600 kHz

18.7 Electrical characteristics

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground. Typical values based on TA = 25 °C.

Table 29.	Electrical	characteristics
	EIGOUIDA	0114140101101100

Symbol	Parameter	Min	Тур	Max	Unit
20 MHz Internal Oscillator					
F _{20MHz}	Oscillator nominal frequency (programmable)		20		MHz
F _{20MHz_ACC}	Oscillator accuracy	-6	_	+6	%
T _{20MHz_step}	Oscillator frequency tuning step transition time		10	_	μs
VR5510	All information provided in this document is subject to legal o	lisclaimers.		© NXP B.V. 2021. All	l rights reserved

Symbol	Parameter	Min	Тур	Max	Unit
Spread spectrum		1	1		
ESS	Spread spectrum frequency modulation	_	23.15		kHz
FSS _{MOD}	(MOD_CONF I2C configuration)	_	92.6	_	kHz
FSS _{RANGE}	Spread spectrum Range (around the nominal frequency)	-5	_	+5	%
Clock synchroniz	ration (PLL)	·			
DC _{FIN_FOUT}	FIN and FOUT duty cycle	40	_	60	%
	FIN input frequency range	333	—	500	kHz
FIN _{RANGE}	(FIN_DIV I ² C configuration)	2	_	3	MHz
FIN _{VIL}	FIN Low Voltage Threshold	0.3 x V _{DDIO}	_		V
FIN _{VIH}	FIN High Voltage Threshold	-	_	0.7 x V _{DDIO}	V
FIN _{ERR_LONG}	CLK_FIN_DIV monitoring, long deviation detection	5	_	_	μs
FIN _{ERR_SHORT}	CLK_FIN_DIV monitoring, short deviation detection	_	_	1.5	μs
FIN _{TLOST}	Time to switch to internal oscillator when FIN is lost	_	_	3	μs
FIN _{DLY}	FIN input buffer propagation delay	_		8	ns
FOUT _{VOL}	FOUT Low Voltage Threshold at 2 mA	_	_	0.5	V
FOUT _{VOH}	FOUT High Voltage Threshold at -2 mA	V _{DDIO} - 0.5	_	_	V
FOUT _{TRISE}	FOUT rise time (from 20% to 80% of VDDIO, Cout=30 pF)	_	_	20	ns
FOUT _{TFALL}	FOUT fall time (from 80% to 20% of VDDIO, Cout=30 pF)	_	_	20	ns
PLL _{TLOCK}	PLL lock time	_		90	μs
PLL _{TSET}	PLL settling time (from EXT_FIN_DIS enable to ±1% of output frequency)		_	125	μs
Low Power Oscill			<u> </u>		
F _{LPMHz}	Oscillator nominal frequency (programmable)	100	300	600	kHz
F _{LPMHz_ACC}	Oscillator accuracy	-10	_	10	%

Table 29. Electrical characteristics...continued

19 Analog Multiplexer: AMUX

19.1 Functional description

The AMUX pin delivers 32 analog voltage channel outputs to the MCU ADC input. The AMUX output is buffered through the AMUX/FOUT pin. The AMUX_FOUT bit (CFG_BUCK2_2_OTP register) programs this pin to function as either an AMUX or an FOUT pin. The voltage channels delivered to the AMUX pin are selected by I^2C commands. The maximum AMUX output voltage is 1.8 V.

19.2 Block diagram

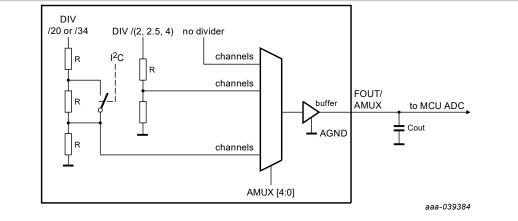


Figure 24. AMUX block diagram

19.3 AMUX channel selection

Table 30. AMUX output selection

AMUX [4:0]	Signal selection for AMUX output
00000 (default)	GND
00001	VDDIO voltage divided by 2
00010	AMUX Temperature Sensor
00011	Bandgap Main
00100	Bandgap Fail-safe
00101	BUCK1 voltage
00110	BUCK2 voltage
00111	BUCK3 voltage divided by 2.5
01000	VPRE voltage divided by 4
01001	BOOST Voltage divided by 4
01010	LDO1 voltage divided by 4
01011	LDO2 voltage divided by 4
01100	BOS voltage divided by 4
01101	Reserved
01110	VSUP1 voltage divided by 20 or 34 (I ² C configuration with bit RATIO in M_ AMUX register)
01111	PWRON1 voltage divided by 20 or 34 (I ² C configuration with bit RATIO in M_AMUX register)
10000	PWRON2 voltage divided by 4
10001	HVLDO voltage divided by 2
10010	LDO3 voltage divided by 4
Others	Same as default value (00000): GND

19.4 Electrical characteristics

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground. Typical values based on TA = 25 °C.

Table 31.	Electrical	characteristics
-----------	------------	-----------------

Symbol	Parameter	Min	Тур	Мах	Unit
AMUX		I			_
V _{AMUX_IN}	Input voltage range for VSUP, PWRON1, Ratio 20 Ratio 34 	2.7 2.7	_	36 60	V
I _{AMUX}	Output buffer current capability	—		2.0	mA
V _{AMUX_OFF}	AMUX Offset voltage (lout = 1 mA) 0.7 V to 2.2 V	-8		8	mV
	AMUX Offset voltage (lout = 1 mA) 0.1 V to 3.0 V	-10		10	mV
	Ratio accuracy			-	_
	Ratio 1	-0.75		0.75	
	Ratio 2	-1.5		1.5	
V _{AMUX_RATIO}	Ratio 2.5	-1.5		1.5	
	Ratio 4	-3.75		3.75	
	Ratio 20	-2		2	
	Ratio 34	-2	_	2	
V _{AMUX_BRIDGE}	VSUP1, PWRON1 resistor bridge	—	0.5	_	MΩ
V _{TEMP25}	Temperature sensor voltage at 25 °C	0.67	0.69	0.71	V
V _{TEMP_COEFF}	Temperature sensor coefficient	-2		-1.9	mV/°C
T _{AMUX_SET}	Settling time (from 10% to 90% of 1.8 V, Cout=1 nF)	_	_	10	μs
C _{AMUX_OUT}	Output capacitance	_	0.01	_	μF

20 I/O Interface Pins

20.1 PWRON1, PWRON2

PWRON pins are used to manage the internal biasing of the device and the Main state machine transitions.

- When PWRON1 or PWRON2 > PWRON12_{VIH}, the internal biasing starts and the equivalent digital state is 1
- When PWRON1 or PWRON2 < PWRON12_{VIL}, the equivalent digital state is 0
- When PWRON1 and PWRON2 < PWRON12_{AVIL}, the internal biasing is stopped

PWRON1 and PWRON2 are level-based power-up input signals with an analog measurement capability through AMUX. PWRON1 can be connected to VBAT and PWRON2 to the MCU. When the PWRON1 pin is used as a global pin, a C - R - C protection filter is required, as shown in the application schematics in <u>Section 21</u> "Application Schematic".

When Deep Sleep mode is enabled via OTP, the PWRON2 pin is used to transition to Deep Sleep mode from normal operation. The PWRON2_DSM_EN bit (M_MODE register) should be enabled in that case.

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground.

Table 32. Electrical characteristics

Symbol	Parameter	Min	Тур	Max	Unit
PWRON1, PWRON2	1				_
PWRON1 _{VIN}	PWRON1 input supply range	_	_	60	V
PWRON2 _{VIN}	PWRON2 input supply range	—	—	5.5	V
PWRON1 _{VIL}	Digital Low input voltage threshold	—	—	2.7	V
PWRON2 _{VIL}	Digital Low input voltage threshold	—	—	0.7	V
PWRON1 _{VIH}	Digital High input voltage threshold	3.5	_	_	V
PWRON2 _{VIH}	Digital High input voltage threshold	1.15	—	_	V
T _{PWRON12}	Filtering time	50	70	100	μs

20.2 INTB

INTB is an open-drain output pin that generates a pulse to inform the MCU when an internal interrupt occurs. Each interrupt can be masked by setting the corresponding inhibit interrupt bit in the M_INT_MASK1 or M_INT_MASK2 register for the Main logic and FS_INTB_MASK register for the Fail Safe logic.

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground. Typical values based on TA = 25 °C.

Table 33. Electrical characteristics

Symbol	Parameter		Тур	Max	Unit
Interrupt pin					
INTB _{PULL-up}	External pull-up resistor to VDDIO	_	5.1	_	kΩ
INTB _{VOL}	Low output level threshold (I = 2.0 mA)		_	0.4	V
INTB _{PULSE}	Pulse duration	90	100	110	μs

Table 34. List of interrupts from Main logic

Interrupt Main	Description
VSUPUV7	VSUP Under Voltage 7 V
VSUPUVH	VSUP Under Voltage high
VSUPUVL	VSUP Under Voltage low
VBOSUVH	VBOS Under Voltage high
VPREOC	VPRE Over current
VPRE_FB_OV	VPRE Over Voltage protection

Interrupt Main	Description
VPREUVH	VPRE Under Voltage high
VPREUVL	VPRE Under Voltage low
BUCK1_TSDFLG	BUCK1 Over temperature shutdown event
BUCK1OC	BUCK1 Over current
BUCK2_TSDFLG	BUCK2 Over temperature shutdown event
BUCK2OC	BUCK2 Over current
BUCK3_TSDFLG	BUCK3 over temperature shutdown event
BUCK3_OC	BUCK3 Over current
BOOST_TSDFLG	BOOST Over temperature shutdown event
HVLDOOC	HVLDO Over current
HVLDO_TSDFLG	HVLDO Over temperature shutdown event
VBOOSTOV	BOOST Over Voltage
VBOOSTUVH	BOOST Under Voltage high
LDO1_TSDFLG	LDO1 Over temperature shutdown event
LDO10C	LDO1 Over current
LDO2_TSDFLG	LDO2 Over temperature shutdown event
LDO2OC	LDO2 Over current
LDO3_TSDFLG	LDO3 Over temperature shutdown event
LDO3OC	LDO3 Over current
PWRON1FLG	PWRON1 transition
PWRON2FLG	PWRON2 transition
COM_ERR	I ² C communication error
DIE_CENTER_TEMPFLG	Die Center temperature
TSD_BIST_ERR_FLG	TSD check during BIST

Table 34. List of interrupts from Main logic...continued

 Table 35. List of interrupts from Fail-safe logic

Interrupt Fail-safe	Description
FCCU12	FCCU12 bi-stable error detected
FCCU1	FCCU1 single error detected
FCCU2	FCCU2 single error detected
VCOREMON_OV	VCOREMON over-voltage detected
VCOREMON_UV	VCOREMON under-voltage detected
VDDIO_OV	VDDIO over-voltage detected
VDDIO_UV	VDDIO under-voltage detected
VMON1_OV	VMON1 over-voltage detected
VMON1_UV	VMON1 under-voltage detected

VR5510 Product data sheet

Interrupt Fail-safe	Description
VMON2_OV	VMON2 over-voltage detected
VMON2_UV	VMON2 under-voltage detected
VMON3_OV	VMON3 over-voltage detected
VMON3_UV	VMON3 under-voltage detected
VMON4_OV	VMON4 over-voltage detected
VMON4_UV	VMON4 under-voltage detected
HVLDO_OV	HVLDO VMON over-voltage detected
HVLDO_UV	HVLDO VMON under-voltage detected
WD_BAD_DATA	Wrong watchdog refresh – wrong data
WD_BAD_TIMING	Wrong watchdog refresh – CLOSED window or timeout

Table 35. List of interrupts from Fail-safe logic...continued

20.3 PSYNC

PSYNC function allows the management of complex start-up sequences with multiple power management ICs, such as two VR5510s or one VR5510 and one external device (e.g. a PF8200). This function is enabled with the PSYNC_EN_OTP bit (CFG_SM_2_OTP register). PSYNC_CFG_OTP=0 specifies two VR5510; PSYNC_CFG_OTP=1 specifies a VR5510 and an external device, such as a PF8200.

When PSYNC is used to synchronize two VR5510 devices, the PSYNC pin of each device must be connected and pulled up to the VBOS pin of the VR5510 master device as shown in <u>Figure 25</u>. In this configuration, the VR5510#1 state machine stops and waits for VR5510#2 in order to synchronize the two VPRE start-ups.

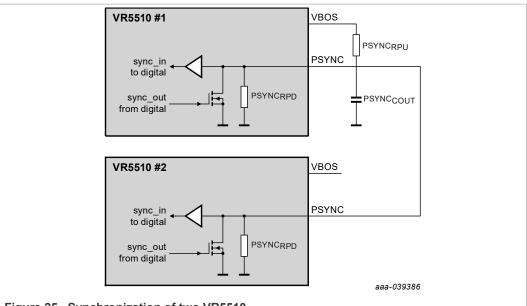


Figure 25. Synchronization of two VR5510

When PSYNC is used to synchronize one VR5510 and one PF8200 (or other PMICs), the PSYNC pin of the VR5510 must be connected to the PGOOD pin of the PF8200. PSYNC can be pulled up to the VBOS or VSNS pin. In this configuration, after VPRE

starts, the VR5510 state machine stops and waits for the PF8200 PGOOD to be released before continuing its own power-up sequence.

The VPRE_OFF_DLY_OTP bit (CFG_SM_2_OTP register) allows the VR5510 powerdown sequence to delay the VPRE turn-off time (250 μ s or 32 ms).

The PSYNC_PWRDWN_EN_OTP bit (CFG_BUCK2_1_OTP register) can be set to enable PSYNC to power down the VR5510 when the PSYNC level is low.

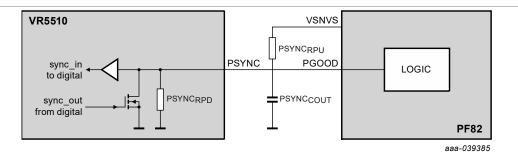


Figure 26. Synchronization of one VR5510 and one PF82

The PSYNC_PGOOD_EXT_OTP bit (CFG_SM_2_OTP register) allows the HVLDO to transition in switch mode (only from standby wake up) in the state NORMAL_M when PSYNC is going high. This function is available only if PSYNC_EN_OTP=0.

Table 36. PSYNC_PGOOD_EXT_OTP configuration

PSYNC_PGOOD_EXT_OTP	HVLDO transition in switch mode based on PSYNC pin
0	Disabled
1	Enabled

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground. Typical values based on TA = 25 °C.

Table 37.	Electrical	characteristics
-----------	------------	-----------------

Symbol	Parameter	Min	Тур	Мах	Unit
PSYNC					
PSYNC _{VIL}	Low Level Input Threshold	0.7	_	_	V
PSYNC _{VIH}	High Level Input Threshold	_	—	1.4	V
PSYNC _{VOL}	Low Level Output Threshold (I = 2.0 mA)	_	-	0.5	V
PSYNC _{RPU}	External Pull Up resistor to VBOS	_	10	-	ΚΩ
PSYNC _{RPD}	Internal Pull Down resistor (weak pull-down when VR5510 is not powered)	_	400	_	KΩ
PSYNC _{COUT}	External decoupling capacitor	_	0.1	—	μF
PSYNC _{TFB}	Feedback filtering time	6	10	15	μs

20.4 STBY_PGOOD

STBY_PGOOD is an output that can be connected in the application to the MCU. The standby PGOOD feature is enabled through the STBY_PGOOD_EN_OTP bit (CFG_DEVID_OTP register). The STBY_PGOOD pin is high in Normal mode and is

asserted low in Standby mode to indicate a safe transition into Standby mode when the regulators are discharged below the STBY_DISCH_OTP (CFG_DEVID_OTP register) setting.

Table 38. STBY_DISCH_OTP configuration

STBY_DISCH_OTP	Discharge threshold selection
0	75 mV
1	150 mV

An option is available to monitor the discharge of an external regulator via the VMON1.

Table 39. EXT_STBY_DISCH_OTP configuration

EXT_STBY_DISCH_OTP	Enable the discharge monitoring of an external PMIC on VMON1		
0	Disabled		
1	Enabled, threshold is based on STBY_DISCH_OTP setting		

The STBY_PGOOD_DLY_OTP bit (CFG_BUCK1_2_OTP register) selects the length of the delay before releasing the STBY_PGOOD pin in NORMAL_M state when waking up from Standby mode. The length of the delay depends on the HVLDO voltage setting configuration:

Table 40. STBY_PGOOD_DLY_OTP configuration

STBY_PGOOD_DLY_O	TP STBY_PGOOD delay in NORMAL_M state
0	400 µs for HVLDO set to 3.3 V
1	300 µs for HVLDO set to 0.8 V

The STBY_PGOOD_TEST_EN bit enables the STBY_PGOOD test function. When the test function is enabled, the output level is controlled via the STBY_PGOOD_TEST_LVL bit. This function can be used by the MCU to check that the STBY_PIN is toggling correctly. Both bits are located in the M_MODE register.

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground.

Table 41. Electrical characteristics

Symbol	Parameter	Min	Тур	Max	Unit
STBY_PGOOD					
V _{STBY_PG_OL}	Low output level threshold (I = 2.0 mA)	_	_	0.4	V
V _{STBY_PG_OH}	High output level threshold (I = 2.0 mA)	0.83*VPRE	_	_	V

20.5 STBY input

The STBY pin is an input that can be connected in the application to the MCU. The standby input pin polarity can be programmed through STBY_POLARITY_OTP bit (CFG_DEVID_OTP) to either active high or active low in Standby mode.

The Fail-safe logic manages STBY entry.

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Тур	Мах	Unit
STANDBY	Х				
V _{STBY_IL}	Low input level threshold	0.7	_	_	V
V _{STBY_IH}	High input level threshold	_		1.4	V
V _{STBY_FLT}	Standby filter time	27.3	—	44.4	μs

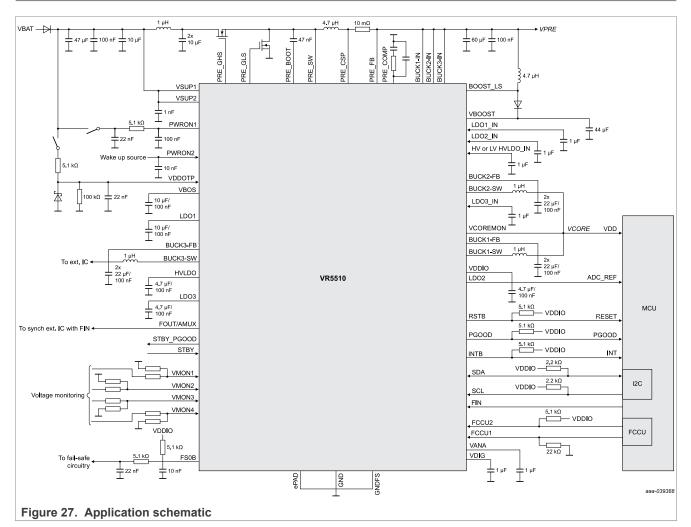
Table 42. Electrical characteristics

In Standby mode, a standby timer in the Main logic automatically turns the VR5510 off if a timeout occurs. This timer is enabled by setting both the STBY_TIMER_EN_OTP bit (CFG_DEVID_OTP register) and the STBY_TIMER_EN bit (M_SM_CTRL1 register) to one. The STBY_TIMER_EN_OTP bit can be set using I²C commands. The STBY_TIMER_EN bit can only be enabled by OTP.

The timer window duration is programmable by using I^2C to set the TIMER_STBY_WINDOW[3:0] bits (M_SM_CTRL1 register) (see <u>Table 43</u>).

Table 43. Standby timer duration

TIMER_STBY_WINDOW[3:0]	Configure the standby timer duration		
0000 (default)	16 ms		
0001	32 ms		
0010	128 ms		
0011	512 ms		
0100	1024 ms		
0101	4096 ms		
0110	8192 ms		
0111	16384 ms		
1000	65536 ms		
1001	131072 ms		
1010	262144 ms		
1011	524288 ms		
1100	1048576 ms		
1101	2097152 ms		
1110	4194304 ms		
1111	8388608 ms		


20.6 PWRON2 for Deep Sleep mode

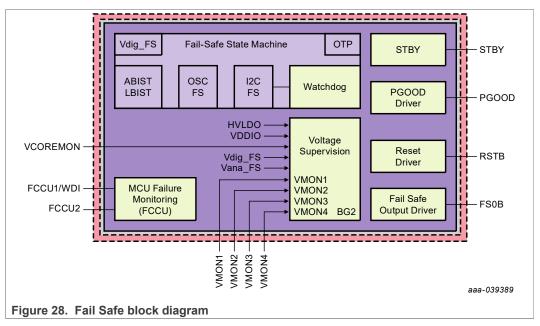
The PWRON2 pin manages the transition to Deep Sleep mode if both the DSM_EN_OTP bit (CFG_CLOCK_3_OTP) and the PWRON2_DSM_EN bit (M_MODE register) are set to 1.

Deep Sleep mode shuts down all VR5510 regulators except the HVLDO. When the device is in Deep Sleep mode, the HVLDO regulator can only operate as an LDO at 3.3 V.

Only the PWRON2 input detector is active in Deep Sleep mode, so only that pin can be used to exit the mode.

21 Application Schematic

Refer to the VR5510 Device Guideline for more details on the schematic


22 Safety

22.1 Functional description

The Fail-safe domain is electrically independent and physically isolated. The Fail-safe domain is supplied by its own reference voltages and current, has its own oscillator, has a duplicate analog path to minimize common cause failures, and has LBIST/ABIST to cover latent faults. The Fail-safe domain offers QM, ASIL B or ASIL D compliancy depending on device part number. Fail-safe timings are derived from the Fail-safe oscillator with $\pm 10\%$ accuracy, unless otherwise specified.

The Fail-Safe domain and its dedicated pins are shown in Figure 28.

Multi-Output PMIC with SMPS and LDO

Note: Refer to the VR5510 Device Guideline for more details on the schematic.

22.2 QM versus ASIL-B versus ASIL-D

Table 44.	QM VS ASIL-B	/S ASIL-D	safety features
14010 44.			ouroly roularoo

Safety Features	QM	ASIL B	ASIL D
PGOOD output pin	Yes	Yes	Yes
RSTB output pin	Yes	Yes	Yes
FS0B output pin	No	Yes	Yes
Watchdog monitoring	No	Simple WD	Challenger WD
FCCU monitoring	No	Yes	Yes
MCU Fault Recovery Strategy	No	No	Yes
Analog BIST (ABIST)	No	Yes	Yes
Logical BIST (LBIST)	No	No	Yes

22.3 Fail-safe initialization

After POR or a wake-up from Standby mode or Deep Sleep mode, when the RSTB pin is released, the Fail-Safe State Machine enters into the INIT_FS phase for initialization. To secure the writing process during INIT_FS (in addition to CRC computation during I²C transfer), the MCU must perform the following sequence for all INIT_FS registers. The procedure is described below, where the *Register_A* suffix stands for the suffix of any INIT_FS register (e.g. FS_I_*FSSM*, FSI_I_*SVS*, etc.).

- 1. Write the desired data in the FS_I_Register_A (DATA)
- 2. Write the one's complement of the FS_I_*Register A* in the FS_I_NOT_*Register_A* (DATA_NOT)

For example, if FS_I_Register_A = 0xABCD, then 0x5432 (the one's complement of 0xABCD) must be written to FS_I_NOT_Register_A. Only the utility bits must be inverted

in the DATA_NOT content. The RESERVED bits are not considered and can be written to zero.

A real-time comparison process (XOR) is performed by the VR5510 to ensure DATA RS_I_Register_A=DATA_NOT FS_I_NOT_Register_A. If the comparison result is correct, then the REG_CORRUPT bit (FS_STATES register) is set to zero. If the comparison result is wrong, then the REG_CORRUPT bit is set to one. REG_CORRUPT monitoring is active as soon as the INIT_FS phase is closed by the first good watchdog refresh.

INIT_FS must be closed by the first good watchdog refresh before the window timeout. The window duration is programmable via the WD_INIT_TIMEOUT_OTP[1:0] bits (CFG_ 2_OTP register).

After the INIT_FS phase closes, it can be re-entered again from any other FS_state by setting the GOTO_INITFS bit (FS_SAFE_IOS register).

22.4 Watchdog

The watchdog is a windowed watchdog for the Simple and the Challenger watchdog. The first part of the window is referred to as the CLOSED window and the second part is referred to as the OPEN window. A good watchdog refresh is a good watchdog response during the OPEN window. A bad watchdog refresh is a bad watchdog response during the OPEN window, no watchdog refresh during the OPEN window or a good watchdog response during the CLOSED window. After a good or a bad watchdog refresh, a new window period starts immediately so that the MCU stays synchronized with the windowed watchdog. <u>Figure 29</u> illustrates the watchdog window error possibilities:

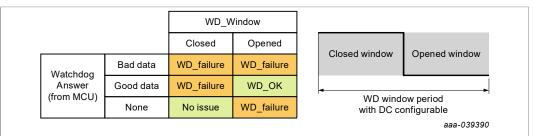


Figure 29. Watchdog window error

The first good watchdog refresh closes the INIT_FS phase. The watchdog window continues running and the MCU must refresh the watchdog in the OPEN window of the watchdog window period. The duration of the watchdog window is configurable from 1 ms to 1024 ms with the WD_WINDOW [3:0] bits (FS_WD_WINDOW register). The new watchdog window takes effect after the next watchdog refresh. The watchdog window can only be disabled during the INIT_FS phase. A watchdog disable takes effect when INIT_FS closes.

WD_WINDOW[3:0]	Watchdog Window Period
0000	DISABLE (during INIT_FS only)
0001	1.0 ms
0010	2.0 ms
0011 (default)	3.0 ms
0100	4.0 ms

Product data sheet

© NXP B.V. 2021. All rights reserved.

WD_WINDOW[3:0]	Watchdog Window Period
0101	6.0 ms
0110	8.0 ms
0111	12 ms
1000	16 ms
1001	24 ms
1010	32 ms
1011	64 ms
1100	128 ms
1101	256 ms
1110	512 ms
1111	1024 ms
Reset condition	POR

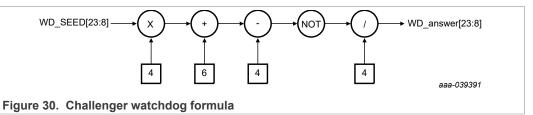
Table 45. Watchdog window period configuration...continued

The duty cycle of the watchdog window is configurable from 31.25% to 68.75% with the WDW_DC [2:0] bits (FS_WD_WINDOW register). The new duty cycle is effective after the next watchdog refresh.

Table 46. Watchdog window duty cycle configuration

WDW_DC [2:0]	CLOSED window	OPEN window
000	31.25%	68.75%
001	37.5%	62.5%
010 (default)	50%	50%
011	62.5%	37.5%
100	68.75%	31.25%
Others	50%	50%
Reset condition	POR	

22.4.1 Simple watchdog


The Simple watchdog uses a unique seed. The MCU can send its own seed to the WD_SEED bit field (FS_WD_SEED register) or it can use the default value 0x5AB2. This seed must be written in the WD_ANSWER bit field (FS_WD_ANSWER register) during the OPEN watchdog window. When the result is correct, the watchdog window is restarted. When the result is incorrect, the WD error counter is incremented and the watchdog window is restarted. In Simple watchdog configuration, a 0xFFFF and 0x0000 value cannot be written to WD_SEED. If a 0x0000 or 0xFFFF write is attempted, a communication error is reported.

22.4.2 Challenger watchdog

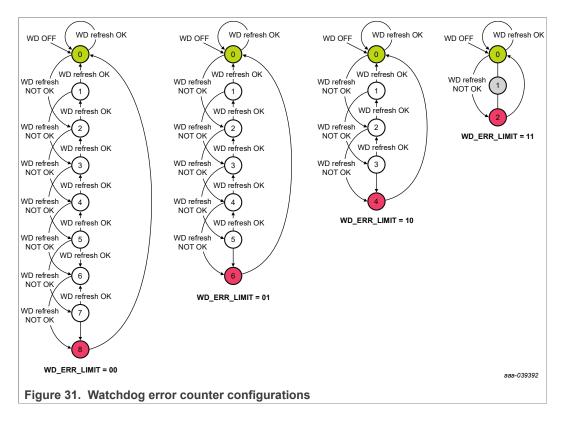
The Challenger watchdog is based on a question/answer exchange between the VR5510 and the MCU. During the INIT_FS phase, the VR5510 implements a Linear Feedback Shift Register (LFSR) to generate a 16-bit pseudo-random word. The MCU can send

a different LFSR seed or use the default VR5510 LFSR value (0x5AB2) to perform a predefined calculation. The result is sent through by I²C during the OPEN watchdog window and verified by the VR5510. When the result is correct, the watchdog window is restarted and a new LFSR is generated. When the result is wrong, the WD error counter is incremented, the watchdog window is restarted and the LFSR value is not changed.

During the initialization phase (INIT_FS), the MCU sends the seed for the LFSR, or uses the default LFSR value generated by the VR5510 (0x5AB2), available in the WD_SEED register. Using this LFSR, the MCU performs a simple calculation based on below formula and sends the results in the WD_ANSWER register.

22.4.3 Watchdog error counter

The watchdog error strategy is available for the Challenger watchdog and the Simple watchdog. The watchdog error counter is implemented in the device to filter the incorrect watchdog refresh. Each time a watchdog failure occurs, the device increments the counter by two. The watchdog error counter is decremented by one each time the watchdog is properly refreshed. This principle ensures that a cyclic 'OK/NOK' behavior converges on a failure detection.


To allow flexibility in the application, the maximum value of the watchdog error counter is configurable with the WD_ERR_LIMIT[1:0] bit field (FS_I_WD_CFG register) during the INIT_FS phase.

WD_ERR_LIMIT[1:0]	Watchdog Error Counter value
00	8
01 (default)	6
10	4
11	2
Reset condition	POR

Table 47. Watchdog error counter

The watchdog error counter value can be read by the MCU for diagnostic purposes from the WD_ERR_CNT[3:0] bit field (FS_I_WD_CFG register).

Multi-Output PMIC with SMPS and LDO

22.4.4 Watchdog refresh counter

The watchdog refresh strategy is available for the Challenger watchdog and the Simple watchdog. The watchdog refresh counter is used to decrement the fault error counter. Each time the watchdog is properly refreshed, the watchdog refresh counter is incremented by one. Each time the watchdog refresh counter reaches its maximum value (six by default), if the next WD refresh is also good, the fault error counter is decremented by one. Whatever position the watchdog refresh counter is in, each time a wrong refresh watchdog occurs, the watchdog refresh counter is reset to zero.

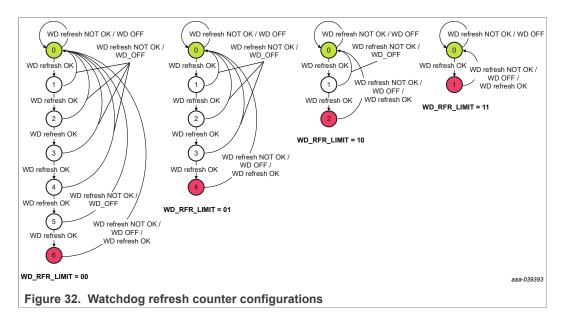

To allow flexibility in the application, the maximum value of the watchdog refresh counter is configurable with the WD_RFR_LIMIT[1:0] bit field (FS_I_WD_CFG register) during the INIT_FS phase.

Table 48.	Watchdog	refresh	counter	configuration
-----------	----------	---------	---------	---------------

WD_RFR_LIMIT[1:0]	Watchdog Refresh Counter value
00 (default)	6
01	4
10	2
11	1
Reset condition	POR

The watchdog refresh counter value can be read by the MCU for diagnostic purposes with the WD_RFR_CNT[2:0] bit field (FS_I_WD_CFG register).

Multi-Output PMIC with SMPS and LDO

22.4.5 Watchdog error impact

When the watchdog error counter reaches its maximum value, the Fail-safe reaction on RSTB and/or FS0B is configurable with the WD_FS_IMPACT[1:0] bit field (FS_I_WD_CFG register) during the INIT_FS phase.

WD_FS_IMPACT[1:0]	Watchdog Error Impact on RSTB/FS0B
00	No action on RSTB and FS0B
01	FS0B only is asserted if WD error counter = WD_ERR_LIMIT[1:0]
1x	FS0B and RSTB are asserted if WD error counter = WD_ERR_LIMIT[1:0]
Reset condition	POR

22.4.6 MCU fault recovery strategy

This functionality extends the watchdog window to allow the MCU to perform a fault recovery strategy. The goal is to prevent the MCU from being reset while it is trying to recover the application after a failure event.

When a fault is triggered by the MCU via its FCCU pins, the device asserts the FS0B pin and the watchdog window duration automatically becomes an open window (no more duty cycle). This open window duration is configurable with the WDW_RECOVERY [3:0] bit field (FS_WD_WINDOW register) during the INIT_FS phase.

WDW_RECOVERY [3:0]	Watchdog Window Duration when the device is in Fault Recovery Strategy
0000	DISABLE
0001	1.0 ms
0010	2.0 ms
0011	3.0 ms

VR5510

© NXP B.V. 2021. All rights reserved

WDW_RECOVERY [3:0]	Watchdog Window Duration when the device is in Fault Recovery Strategy
0100	4.0 ms
0101	6.0 ms
0110	8.0 ms
0111	12 ms
1000	16 ms
1001	24 ms
1010	32 ms
1011(default)	64 ms
1100	128 ms
1101	256 ms
1110	512 ms
1111	1024 ms
Reset condition	POR

Table 50. Fault recovery window configuration...continued

The transition from WD_WINDOW to WDW_RECOVERY happens when the FCCU pin indicates an error and FS0B is asserted.

If the MCU sends a good watchdog refresh before the end of the WDW_RECOVERY duration, the device switches back to the WD_WINDOW duration and the associated duty cycle if the FCCU pins no longer indicate an error. Otherwise, a new WDW_RECOVERY period is started.

If the MCU does not send a good watchdog refresh before the end of the WDW_RECOVERY duration, a reset pulse is generated and the Fail-safe state machine moves back to INIT_FS.

FCCU	Normal phase	Error phase	Normal phase		Error phase			
FSOB		FCCU error FLT_ERR_CNT + 1	good		FCCU error FLT_ERR_CNT + 1 good	bad \ I WD window		ut
WD_WINDOW	WDW_PERIOD	WDW_RECOVERY		WDW_PERIOD	WDW_RECOVERY	WDW_RECOVERY	 	NIT_FS
RSTB								
	I		Į	I	I	I	aa	a-039394

Figure 33. Fault recovery strategy

22.5 FCCU monitoring

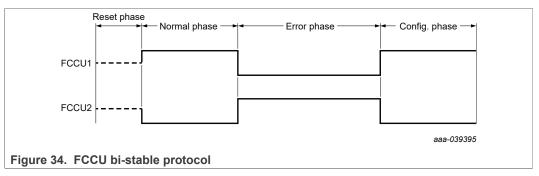

The FCCU input pins monitor hardware failures from the MCU. The FCCU input pins can be configured by pair, or as single independent inputs. FCCU monitoring is active as soon as the INIT_FS is closed by the first good watchdog refresh. The FCCU input pins are configured by pair, or single independent inputs with the FCCU_CFG[1:0] bit field (FS_I_SAFE_INPUTS register).

Table 51. FCCU pins configuration

FCCU_CFG[1:0]	FCCU pins configuration
00	No monitoring
01 (default)	FCCU1 and FCCU2 monitoring by pair (bi-stable protocol)
10	FCCU1 or FCCU2 input monitoring
11	FCCU1 input monitoring only
Reset condition	POR

22.5.1 FCCU12 monitoring by pair

When FCCU12 are used by pair, the bi-stable protocol is supported as shown in Figure 34:

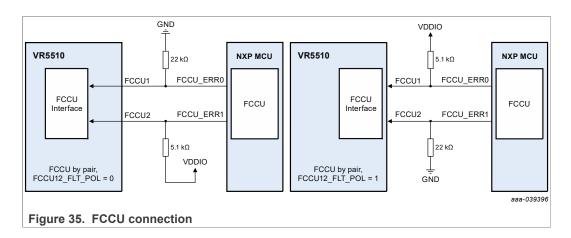
The polarity of the FCCU fault signals is configurable with FCCU12_FLT_POL bit (FS_I_SAFE_INPUTS register) during the INIT_FS phase.

Table 52. FCCU12 polarity configuration

FCCU12_FLT_POL	FCCU12 polarity
0 (default)	FCCU1=0 or FCCU2=1 level is a fault
1	FCCU1=1 or FCCU2=0 level is a fault
Reset condition	POR

When an FCCU fault is detected, the Fail-safe reaction on RSTB and/or FS0B is configurable with the FCCU12_FS_IMPACT bit (FS_I_SAFE_INPUTS register) during the INIT_FS phase.

Table 53. FCCU12 FS impact configuration


FCCU12_FS_IMPACT	FCCU12 impact on RSTB/FS0B
0	FS0B only is asserted
1 (default)	FS0B and RSTB are asserted
Reset condition	POR

External pull-up/down resistors are required to provide a passive error state if the MCU does not drive its FCCU output pins.

Regardless of the VDDIO voltage (1.8 V or 3.3 V), the pull-down resistor value must be at least four times greater than the value of the pull-up resistor in order to detect an FCCU1 short to FCCU2 failure mode.

Product data sheet

Multi-Output PMIC with SMPS and LDO

22.5.2 FCCU12 independent monitoring

When FCCU1 and/or FCCU2 are used independently, the FCCU inputs can monitor two different and independent error signals. For each input, the polarity of the FCCU fault signal is configurable with the FCCU1_FLT_POL and FCCU2_FLT_POL bits (FS_I_SAFE_INPUTS register) during the INIT_FS phase.

Table 54. FCCU12 polarity configuration

FCCU1_FLT_POL	FCCU1 polarity configuration
0 (default)	FCCU1 low level is a fault
1	FCCU1 high level is a fault
Reset condition	POR
FCCU2_FLT_POL	FCCU2_FLT_POL
0 (default)	FCCU2 low level is a fault
1	FCCU2 high level is a fault
Reset condition	POR

When an FCCU fault is detected, the Fail-safe reaction on RSTB and/or FS0B is configurable with the FCCU1_FS_IMPACT and FCCU2_FS_IMPACT bits (FS_I_SAFE_INPUTS register) during the INIT_FS phase.

Table 55. FCCU12 impact configuration

FCCU1_FS_IMPACT	FCCU1 impact on RSTB/FS0B
0	FS0B only is asserted
1 (default)	FS0B and RSTB are asserted
Reset condition	POR
FCCU2_FS_IMPACT	FCCU2 impact on RSTB/FS0B
0	FS0B only is asserted
1 (default)	FS0B and RSTB are asserted
Reset condition	POR

VR5510 Product data sheet

22.5.3 FCCU1 WDI function for i.MX processor

FCCU1 can be configured by OTP to work as the WDI pin in order to be compatible with an i.MX processor applications.

To configure FCCU1 as the WDI pin, set the FCCU_OR_WDI_OTP bit (CFG_1_OTP register) to one. The polarity is configured through the WDI_POL_OTP bit (CFG_I2C_OTP register).

When the WDI pin is asserted by the MCU, the system transitions to Deep Fail-safe and then restarts the application.

22.5.4 FCCU12 electrical characteristics

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground. Typical values based on TA = 25 °C.

Table 56. Electrical characteristics

Symbol	Parameter	Min	Тур	Max	Unit
FCCU1,2				`	
FCCU12 _{TERR}	FCCU1,2 filtering time	4.0		8.0	μs
FCCU12 _{VIH}	FCCU1,2 High level input voltage		_	0.7 x V _{DDIO}	V
FCCU12 _{VIL}	FCCU1,2 Low level input voltage	$0.3 ext{ x V}_{ ext{DDIO}}$	_	—	V
FCCU12 _{HYST}	FCCU1,2 input voltage hysteresis	0.1	_	_	V
FCCU1 _{WDI_FILT}	Debounce filter when FCCU1 is used in WDI Mode	—	10	—	μs

22.6 Voltage supervisor

The voltage supervisor monitors overvoltage and undervoltage occurrences on the VCOREMON, HVLDO, VDDIO and VMON1/2/3/4 input pins. When an overvoltage occurs on a VR5510 regulator monitored by one of these pins, the associated VR5510 regulator is switched off until the fault is removed. Voltage monitoring is active as soon as FS_ENABLE=1. UV/OV flags are reported accordingly.

22.6.1 VCOREMON voltage monitoring

The VCOREMON input pin is dedicated to BUCK1 or BUCK1 & BUCK2 in dual phase operation. When an overvoltage or undervoltage fault is detected, the Fail-safe reaction on RSTB and/or FS0B is configurable with the VCOREMON_OV_FS_IMPACT[1:0] and VCOREMON_UV_FS_IMPACT[1:0] bitfields (FS_I_OVUV_SAFE_REACTION1 register) during the INIT_FS phase.

VCOREMON_OV_FS_IMPACT[1:0]	VCOREMON OV impact on RSTB/FS0B
00	No effect on RSTB and FS0B
01	FS0B only is asserted
10 & 11 (default)	FS0B and RSTB are asserted
Reset condition	POR

Table 57. VCOREMON impact configuration

Product data sheet

© NXP B.V. 2021. All rights reserved

VCOREMON_UV_FS_IMPACT[1:0]	VCOREMON UV impact on RSTB/FS0B	
00	No effect on RSTB and FS0B	
01 (default)	FS0B only is asserted	
10 & 11	FS0B and RSTB are asserted	
Reset condition	POR	

Table 57. VCOREMON impact configuration...continued

VCOREMON OV threshold is configurable via the OTP VCOREOVTH_OTP[3:0] bit field (CFG_ UVOV_ 2_OTP register).

VCOREMON UV threshold is configurable via the OTP VCOREUVTH_OTP[3:0] bit field (CFG_UVOV_6_OTP register).

VCOREMON OV filtering is configurable via the OTP OV_MCU_OTP bit field and the UV via UV_MCU_OTP[1:0] bit field. Both bitfields are in register CFG_DEGLITCH1_OTP.

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Тур	Мах	Unit
VCOREMON		J			
VCOREMON_OV_min	Overvoltage threshold minimum	_	+2.5	_	%
VCOREMON_OV_max	Overvoltage threshold maximum	—	+10	_	%
VCOREMON_OV_step	Overvoltage threshold step (VCOREOVTH[3:0])	_	+0.5	_	%
VCOREMON_OV_acc	Overvoltage threshold accuracy	-2	_	1.5	%
TCOREMON_OV	Overvoltage filtering time	20	25	30	μs
	(OV_MCU_OTP)	40	45	50	μs
VCOREMON_UV_min	Undervoltage threshold minimum	—	-2.5	—	%
VCOREMON_UV_max	Undervoltage threshold maximum	—	-10	—	%
VCOREMON_UV_step	Undervoltage threshold step (VCOREUVTH_OTP[3:0])	_	-0.5		%
VCOREMON_UV_acc	Undervoltage threshold accuracy	-1.5	_	1.5	%
TCOREMON_UV		2.5	5	7.5	μs
	Undervoltage filtering time (UV_MCU_OTP[1:0])	10	15	20	μs
		20	25	30	μs
		35	40	45	μs

 Table 58.
 Electrical characteristics

22.6.2 Static Voltage Scaling (SVS)

The Static Voltage Scaling function allows the MCU to reduce or increase the output voltage initially configured at the start-up of BUCK1 (and BUCK2 if used in multiphase). The SVS configuration must be done in the INIT_FS phase.

The offset value is configurable by I^2C with the SVS_OFFSET[5:0] bit field (FS_I_SVS register) and the exact complemented value must be written in the NOT_SVS_OFFSET[5:0] bits.

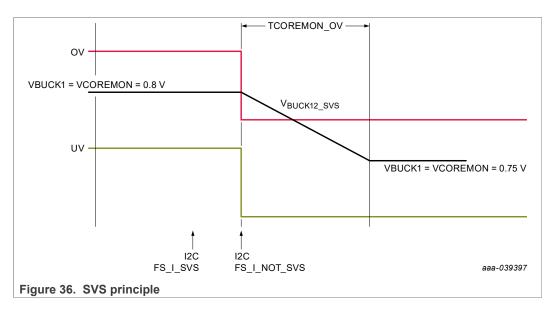
 Table 59. SVS offset configuration

SVS_OFFSET[5:0]	NOT_SVS_OFFSET[5:0]	Offset applied to BUCK1 (and BUCK2 if used in multiphase).
000000 (default)	111111	0 mV
000001	111110	6.25 mV
		6.25 mV step per bit
111111	000000	393.75 mV
Reset condition	POR	

The VCORE_SVS_CLAMP_OTP[5:0] bit field (CFG_UVOV_3_OTP register) sets the maximum value of steps available for the application.

Table	60.	SVS	clamp	configuration
-------	-----	-----	-------	---------------

VCORE_SVS_CLAMP_OTP[5:0]	SVS Max steps	
000000	No SVS	
000001	2 steps available	
000011	4 steps available	
000111	8 steps available	
001111	16 steps available	
011111	32 steps available	
111111	64 steps available	

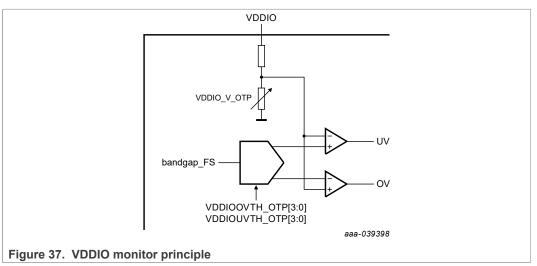

A VCORE_SVS_FULL_OFFSET_OTP bit field (CFG_UVOV_3_OTP register) sets the full offset range to be either negative offset only or both negative and positive offset.

If the full offset range is set, the SVS_OFFSET_SIGN bit (FS_I_SVS register) selects the sign of the offset.

The BUCK1/2 output voltage transition starts when the NOT_SVS_OFFSET[5:0] I^2C command is received and confirmed good. If the NOT_SVS_OFFSET[5:0] value sent by I^2C command is not the one's compliment of the SVS_OFFSET[5:0] value sent by I^2C command, the SVS procedure is not executed and the BUCK1 output voltage remains at its original value.

The OV/UV threshold changes immediately when the NOT_SVS_OFFSET[5:0] I²C command is received and confirmed good. Therefore, the BUCK1 output voltage transition is done within the OV/UV filtering time. Depending on the required offset, the voltages may need to be changed in multiple steps to avoid triggering an OV/UV event.

Multi-Output PMIC with SMPS and LDO



22.6.3 VDDIO monitoring

The VDDIO input pin can be connected to VPRE, LDO1, LDO2, LDO3, BUCK2, BUCK3, or an external regulator. The regulator connected to VDDIO must be at 1.8 V or 3.3 V to be compatible with overvoltage and undervoltage monitoring thresholds. Specifying which regulator is connected to VDDIO (and hence, which regulator is turned off when an overvoltage detection occurs) is done by configuration settings in the VDDIO_REG_ASSIGN_OTP[2:0] bit field (CFG_I2C_OTP register).

If an external regulator is connected to VDDIO, this regulator cannot be turned off, but the overvoltage flag is reported to the MCU which can take appropriate action.

In all cases, the Fail-safe reaction on RSTB and/or FS0B is configured with the VDDIO_OV_FS_IMPACT[1:0] and VDDIO_UV_FS_IMPACT[1:0] bitfields in the FS_I_OVUV_SAFE_REACTION1 register.

The Fail-safe VDDIO voltage (1.8 V or 3.3 V) can be set via the VDDIO_V_OTP bit (CFG_ 1_OTP register).

VDDIO_OV_FS_IMPACT[1:0]	VDDIO OV impact on RSTB/FS0B
00	No effect on RSTB and FS0B
01	FS0B only is asserted
10 & 11 (default)	FS0B and RSTB are asserted
Reset condition	POR
VDDIO_UV_FS_IMPACT[1:0]	VDDIO UV impact on RSTB/FS0B
00	No effect on RSTB and FS0B
01 (default)	FS0B only is asserted
10 & 11	FS0B and RSTB are asserted
Reset condition	POR

Table 61. VDDIO FS impact configuration

VDDIO OV threshold is configurable via the OTP VDDIOOVTH_OTP[3:0] bit field (CFG_UVOV_2_OTP register).

VDDIO UV threshold is configurable via the OTP VDDIOUVTH_OTP[3:0] bit field (CFG_UVOV_6_OTP register).

VDDIO OV filtering is configurable via the OTP register OV_VDDIO_OTP bit (CFG_ DEGLITCH1_OTP register) and the UV via UV_VDDIO_OTP[1:0] bit field (CFG_ DEGLITCH1_OTP register).

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Тур	Max	Unit
VDDIO		1			_
VDDIO_OV_min	Over-voltage threshold minimum	_	+2.5	_	%
VDDIO_OV_max	Over-voltage threshold maximum		+10	_	%
VDDIO_OV_step	Over-voltage threshold step (VDDIOOVTH_OTP[3:0])	_	+0.5		%
VDDIO_OV_acc	Over-voltage threshold accuracy	-2		1.5	%
	Over-voltage filtering time	20	25	30	μs
	(OV_VDDIO_OTP)	40	45	50	μs
VDDIO_UV_min	Under-voltage threshold minimum	—	-2.5	_	%
VDDIO_UV_max	Under -voltage threshold maximum	—	-10	—	%
VDDIO_UV_step	Under -voltage threshold step (VDDIOUVTH_OTP[3:0] bits)	_	-0.5	_	%
VDDIO_UV_acc	Under -voltage threshold accuracy	-1.5	_	1.5	%
		2.5	5	7.5	μs
TVDDIO_UV	Under-voltage filtering time (UV_VDDIO_OTP[1:0])	10	15	20	μs
		20	25	30	μs
		35	40	45	μs

Table 62. Electrical characteristics

22.6.4 HVLDO monitoring

The HVLDO voltage monitor is internally connected to the HVLDO output.

HVLDO VMON can be configured in two modes—Switch mode and LDO mode— via the HVLDO_MODE_OTP bit (CFG_1_OTP register). In Switch mode, the reference internally tracks the Buck1 DVS DAC.

Switch mode can only be used at 0.8 V. In LDO mode, the voltage can be set either to 0.8 V or 3.3 V via the HVLDO_V_OTP bit (CFG_1_OTP register).

In all cases, the Fail-safe reaction on RSTB and/or FS0B is configured by the HVLDO_VMON_OV_FS_IMPACT[1:0] and HVLDO_VMON_UV_FS_IMPACT[1:0] bitfields. Both bit fields are in the FS_I_OVUV_SAFE_REACTION1 register.

Table 63. HVLDO monitor FS impact configuration

HVLDO_VMON_OV_FS_IMPACT[1:0]	HVLDO VMON OV impact on RSTB/FS0B
00	No effect on RSTB and FS0B
01	FS0B only is asserted
10 & 11 (default)	FS0B and RSTB are asserted
Reset condition	POR
HVLDO_VMON_UV_FS_IMPACT[1:0]	HVLDO VMON UV impact on RSTB/FS0B
00	No effect on RSTB and FS0B
01 (default)	FS0B only is asserted
10 & 11	FS0B and RSTB are asserted
Reset condition	POR

HVLDO VMON OV threshold is configurable via the OTP HVLDO_VMON_OVTH_OTP[3:0] bit field (CFG_UVOV_9_OTP register).

HVLDO VMON UV threshold is configurable via the OTP HVLDO_VMON_UVTH_OTP[3:0] (CFG_ UVOV_ 9_OTP register).

HVLDO VMON OV filtering is configurable via the OTP OV_HVLDO_OTP bit and the UV via UV_HVLDO_OTP[1:0] bit field. Both are in the CFG_DEGLITCH1_OTP register.

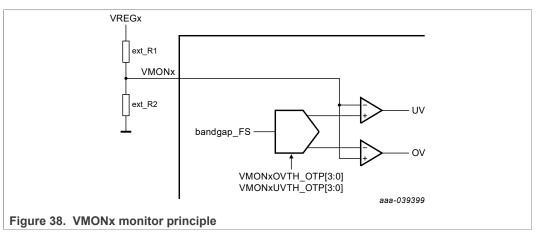
TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground.

 Table 64.
 Electrical characteristics

			_		
Symbol	Parameter	Min	Тур	Max	Unit
HVLDO					
HVLDO_OV_min	Overvoltage threshold minimum	_	+2.5	_	%
HVLDO_OV_max	Overvoltage threshold maximum		+10	_	%
HVLDO_OV_step	DO_OV_step Overvoltage threshold step (HVLDO_VMON_OVTH_OTP[3:0])		+0.5	_	%
VHLDO_OV_acc	Overvoltage threshold accuracy	-2	_	1.5	%
HVLDO_OV	Overvoltage filtering time	20	25	30	μs
	(OV_HVLDO_OTP)	40	45	50	μs

Symbol	Parameter	Min	Тур	Max	Unit
HVLDO_UV_min	Undervoltage threshold minimum		-2.5	_	%
HVLDO_UV_max	Undervoltage threshold maximum		-10		%
HVLDO_UV_step			-0.5	_	%
HVLDO_UV_acc	VHVLDO=0.8 V accuracy	-1.5	—	1.5	%
	VHVLDO=3.3 V accuracy	-2	_	1.5	%
	Undervoltage filtering time (UV_HVLDO_OTP[1:0])	2.5	5	7.5	μs
HVLDO_UV		10	15	20	μs
		20	25	30	μs
		35	40	45	μs

Table 64. Electrical characteristics...continued


22.6.5 VMONx monitoring

The VMONx input pins can be connected to VPRE, LDO1, LDO2, LDO3, BUCK1, BUCK2, BUCK3, BOOST, or to an external regulator.

Specifying which regulator is connected to a VMONx pin (and hence, which regulator is turned off when an overvoltage detection occurs) is done by I^2C in the M_VMON_REGx register.

If an external regulator is connected to a VMONx pin, this regulator cannot be turned off, but the overvoltage flag is reported to the MCU which can take appropriate action.

In all cases, the Fail-safe reaction on RSTB and/or FS0B is configured with the VMONx_OV_FS_IMPACT[1:0] and VMONx_UV_FS_IMPACT[1:0] bitfields in the FS_I_OVUV_SAFE_REACTION2 register.

The external resistor bridge connected to VMONx must be calculated to deliver a midpoint of 0.8 V. Use $\pm 0.1\%$ or less resistor accuracy.

VMONx_OV_FS_IMPACT[1:0]	VMONx OV impact on RSTB/FS0B
00	No effect on RSTB and FS0B
01	FS0B only is asserted
10 & 11 (default)	FS0B and RSTB are asserted
Reset condition	POR
VMONx_UV_FS_IMPACT[1:0]	VMONx UV impact on RSTB/FS0B
00	No effect on RSTB and FS0B
01 (default)	FS0B only is asserted
10 & 11	FS0B and RSTB are asserted
Reset condition	POR

Table 65. VMONx FS impact configuration

VMONx OV threshold is configurable via the OTP VMONxOVTH_OTP[3:0] bit field (CFG_UVOV_4_OTP and CFG_UVOV_5_OTP registers).

VMONx UV threshold is configurable via the OTP VMONxUVTH_OTP[3:0] bit field (CFG_UVOV_7_OTP and CFG_UVOV_8_OTP registers).

VMONx OV filtering is configurable via the OTP OV_VMONx_OTP bit and the UV via UV_VMONx_OTP[1:0] bit field (CFG_DEGLITCHx_OTP registers).

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Тур	Max	Unit
VMONx (without ex	t resistor accuracy)				
VMONx_OV_min	Overvoltage threshold minimum	_	+2.5	_	%
VMONx_OV_max	Overvoltage threshold maximum	—	+10		%
VMONx_OV_step	Overvoltage threshold step		+0.5	_	%
VMONx_OV_acc	Overvoltage threshold accuracy	-2	_	1.5	%
TMONx_OV	Overvoltage filtering time	20	25	30	μs
	(OV_VMONx_OTP)	40	45	50	μs
VMONx_UV_min	Undervoltage threshold minimum	—	-2.5	_	%
VMONx_UV_max	Undervoltage threshold maximum	—	-10	_	%
VMONx_UV_step	Undervoltage threshold step (VMONxUVTH_OTP[3:0] bits)		-0.5	_	%
VMON1_UV_acc	Undervoltage threshold accuracy	-1.4	_	1	%
VMON2_UV_acc	Undervoltage threshold accuracy	-1.3	_	1	%
VMON3_UV_acc	Undervoltage threshold accuracy	-1.5	_	1	%
VMON4_UV_acc	Undervoltage threshold accuracy	-1.4	_	1	%
	Undervoltage filtering time	2.5	5	7.5	μs
TMONx_UV	(UV_VMONx_OTP[1:0])	10	15	20	μs

Table 66. Electrical characteristics

Symbol	Parameter	Min	Тур	Max	Unit
		20	25	30	μs
		35	40	45	μs
VMONx_PD	Internal passive pull-down	1	2	4	MΩ

Table 66. Electrical characteristics...continued

22.7 Fault management

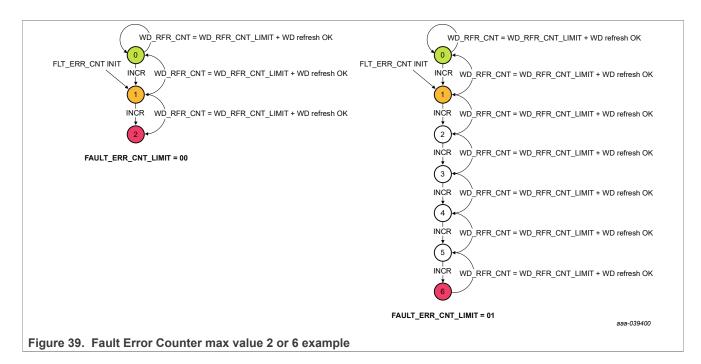
22.7.1 Fault Error Counter

The VR5510 integrates a configurable fault error counter that counts the number of faults related to the device itself as well as those caused by external events.

The Fault Error Counter starts at level 1 after a POR or after resuming from Standby. The final value of the Fault Error Counter is used to transition into Deep Fail-safe mode. The maximum value of this counter is configurable with the FLT_ERR_CNT_LIMIT[1:0] bitfield (FS_I_FSSM register) during the INIT_FS phase.

Table 67. Fault Error Counter configuration

FLT_ERR_CNT_LIMIT[1:0]	Fault Error Counter max value configuration	Fault Error Counter intermediate value
00	2	1
01 (default)	6	3
10	8	4
11	12	6
Reset condition	POR	


The Fault Error Counter has two output values: Intermediate and Final. The intermediate value can be used to force FS0B activation or to generate a RSTB pulse according to the configuration in the FLT_ERR_IMPACT[1:0] bit field (FS_I_FSSM register).

FLT_ERR_IMPACT[1:0]	Fault Error Counter intermediate value impact on RSTB/FS0B
00	No effect on RSTB and FS0B
01	FS0B only is asserted if FLT_ERR_CNT = intermediate value
10 & 11 (default)	FS0B and RSTB area asserted if FLT_ERR_CNT = intermediate value
Reset condition	POR

NXP Semiconductors

Multi-Output PMIC with SMPS and LDO

VR5510

22.7.2 Fault source and reaction

In normal operation, when FS0B and RSTB are released, the Fault Error Counter gets incremented when a fault is detected by the VR5510 Fail-safe Sate Machine. <u>Table 69</u> lists all the faults and their impact on the PGOOD, RSTB and FS0B pins according to the device configuration. Faults not configured to assert RSTB and FS0B will not increment the fault error counter. In that case, only the flags are available for MCU diagnostic.

When FS0B is asserted, the Fault Error Counter continues to be incremented by +1 each time the WD Error Counter reaches its maximum value.

Apps related Fail-safe Faults	FLT_ ERR_CNT increment	FS0B assertion	RSTB assertion	PGOOD assertion
VCOREMON_OV	+1	VCOREMON_OV_FS_IMPACT	VCOREMON_OV_FS_ IMPACT	OTP config
VDDIO_OV	+1	VDDIO_OV_FS_IMPACT	VDDIO_OV_FS_IMPACT	OTP config
HVLDO_OV	+1	HVLDO_VMON_OV_FS_ IMPACT	HVLDO_VMON_OV_FS_ IMPACT	OTP config
VMONx_OV	+1	VMONX_OV_FS_IMPACT	VMONX_OV_FS_IMPACT	OTP config
VCOREMON_UV	+1	VCOREMON_UV_FS_IMPACT	VCOREMON_UV_FS_IMPACT	OTP config
VDDIO_UV	+1	VDDIO_UV_FS_IMPACT	VDDIO_UV_FS_IMPACT	OTP config
HVLDO_UV	+1	HVLDO_VMON_UV_FS_ IMPACT	HVLDO_VMON_UV_FS_ IMPACT	OTP config
VMONx_UV	+1	VMONX_UV_FS_IMPACT	VMONX_UV_FS_IMPACT	OTP config
FCCU12 (pair)	+1	FCCU12FS_IMPACT	FCCU12FS_IMPACT	No
FCCU1 (single)	+1	FCCU1_FS_IMPACT	FCCU1_FS_IMPACT	No

Table 69. Fail Safe fault list and reaction ^[1]

Apps related Fail-safe Faults	FLT_ ERR_CNT increment	FS0B assertion	RSTB assertion	PGOOD assertion	
FCCU2 (single)	+1	FCCU2_FS_IMPACT	FCCU2_FS_IMPACT	No	
WD error counter = max value	+1	WD_FS_IMPACT	WD_FS_IMPACT	No	
Fault Error Counter impact at intermediate Value	No	FLT_ERR_IMPACT	FLT_ERR_IMPACT	No	
Wrong WD refresh in INIT_FS	+1	Yes	Yes	No	
No WD refresh in INIT_FS	+1	Yes	Yes	No	
External RESET (out of extended RSTB)	+1	No	Yes (low externally)	No	
RSTB pulse request by MCU	No	No	Yes	No	
RSTB Short to high	+1	Yes	No (high externally)	No	
FS0B Short to high	+1	No (high externally)	BACKUP_SAFETY_PATH	No	
FS0B request by the MCU	No	Yes	No	No	
Standby Timer Window error	+1	No	Yes	No	
REG_CORRUPT = 1	+1	Yes	No	No	
OTP_CORRUPT = 1	+1	Yes	No	No	
GOTO_INITFS request by MCU	No	Yes	No	No	

Table 69. Fail Safe fault list and reaction ^[1]...continued

[1] Orange cells indicate that the reaction is not configurable.

Green cells indicate that the reaction is configurable by OTP for PGOOD and by I²C for RSTB/FS0B during INIT_FS.

If RSTB2PGOOD_OTP = 0, the RSTB and PGOOD pins work independently (see <u>Table 49</u>. If RSTB2PGOOD_OTP = 1 (default configuration), the RSTB and PGOOD pins work concurrently and all the faults asserting RSTB also assert PGOOD, except for external RSTB detections.

22.8 PGOOD, RSTB, FS0B, STBY

The three safety output pins (PGOOD, RSTB, FS0B) are prioritized hierarchically in order to guarantee the safe state.

- PGOOD has priority one. If PGOOD is asserted, RSTB and FS0B are asserted.
- RSTB has priority two. If RSTB is asserted, FS0B is asserted, but PGOOD may not be asserted.
- FS0B has priority three. If FS0B is asserted, RSTB and PGOOD may not be asserted.

RSTB's release is managed by the Fail-safe state machine and depends on PGOOD's release and the execution of ABIST1.

The voltage monitoring assigned to PGOOD and to ABIST1 determines when RSTB is released. This configuration is done by OTP.

The STBY input pin is used to enter or exit Standby mode. Standby entry is handled by the Fail-safe state machine. Standby exit is handled by the Main state machine.

22.8.1 PGOOD

PGOOD is an open-drain output that can be connected in the application to the MCU's PORB pin. PGOOD requires an external pull-up resistor to VDDIO or VPRE and a filtering capacitor to GND for immunity.

An internal pull-down RPD ensures that PGOOD remains at low level when the device is off or powering down.

When PGOOD is asserted low, RSTB and FS0B are also asserted low. An internal pullup on the gate of the low side MOS ensures PGOOD remains at low level when an FS_LOGIC failure occurs.

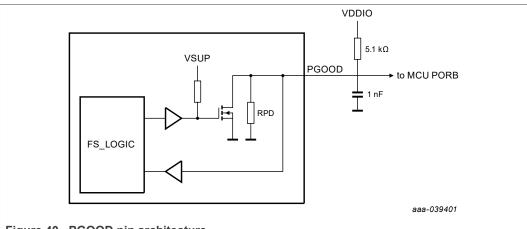


Figure 40. PGOOD pin architecture

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless
otherwise specified. All voltages referenced to ground.

Table 70.	Electrical	characteristics
-----------	------------	-----------------

Symbol	Parameter	Min	Тур	Мах	Unit
PGOOD				·	
PGOOD _{VIL}	Low level input voltage	0.7	_	—	V
PGOOD _{VIH}	High level input voltage	_	—	1.5	V
PGOOD _{HYST}	Input voltage Hysteresis	100	_	_	mV
PGOOD _{VOL}	Low level output voltage (I = 2.0 mA)	_	_	0.4	V
PGOOD _{RPD}	Internal pull down resistor	200	400	800	kΩ
PGOOD _{ILIM}	Current limitation	4.0	—	22	mA
PGOOD _{TFB}	Feedback filtering time	8.0	—	15	μs
PGOOD _{FALL}	PGOOD Falling time	—	—	4	μs

22.8.2 RSTB

RSTB is an open-drain output that can be connected in the application to the MCU's RESET pin. RSTB requires an external pull-up resistor to VDDIO or VPRE and a filtering capacitor to GND for immunity.

An internal pull-down RPD ensures that RSTB remains at low level when the device is off or powering down. RSTB assertion depends on the device configuration during INIT_FS phase.

When RSTB is asserted low, FS0B is also asserted low. An internal pull-up on the gate of the low side MOS ensures that RSTB remains at low level when an FS_LOGIC failure occurs. When RSTB is stuck low for more than $RSTB_{T8S}$, the device transitions into Deep Fail-safe mode.

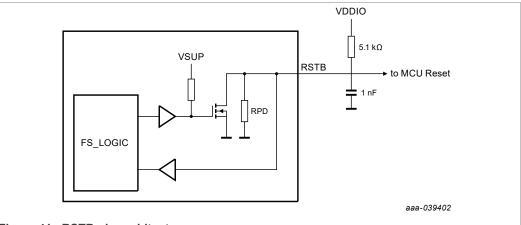


Figure 41. RSTB pin architecture

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground. Typical values based on TA = 25 °C.

Table 71.	Electrical	characteristics

Symbol	Parameter	Min	Тур	Max	Unit
RSTB					
RSTB _{VIL}	Low level Input voltage	0.7	_		V
RSTB _{VIH}	High level Input voltage	_	—	1.5	V
RSTB _{HYST}	Input voltage hysteresis	100	_	_	mV
RSTB _{VOL}	Low level output voltage (I = 2.0 mA)		_	0.4	V
RSTB _{RPB}	Internal pull-down resistor	200	400	800	kΩ
RSTBILIM	Current limitation	6.0	_	22	mA
RSTB _{TFB}	Feedback filtering time	8.0	_	15	μs
RSTB _{TSC}	Short to high filtering time	500	_	800	μs
RSTB _{TLG}	Long pulse (configurable with RSTB_DUR bit)	9.0	_	11	ms
RSTB _{TST}	Short pulse (configurable with RSTB_DUR bit)	0.9	_	1.1	ms
RSTB _{T8S}	8 second timer	7.0	8.0	9.0	s
RSTB _{TRELEASE}	Time to release RSTB from Wake Up or POR with all regulators started in Slot 0		5	_	ms
RSTB _{FALL}	RSTB Falling time	_	—	4	μs

VR5510 Product data sheet

22.8.3 FS0B

FS0B is an open-drain output that can be used to transition the system into safe state. FS0B requires an external pull-up resistor to VDDIO or VSUP, a 10 nF filtering capacitor to GND for immunity when FS0B is a local pin, and an additional RC network when FS0B is a global pin to be robust against ESD GUN and ISO 7637 transient pulses.

An internal pull-down RPD ensures that FS0B remains low level when the device is in Standby or power-down mode. FS0B assertion depends on the device configuration during INIT_FS phase. An internal pull-up on the gate of the low side MOS ensures that FS0B remains at low level when an FS_LOGIC failure occurs.

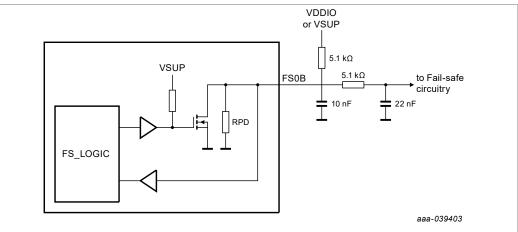


Figure 42. FS0B pin architecture

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground. Typical values based on TA = 25 °C.

 Table 72.
 Electrical characteristics

Symbol	Parameter	Min	Тур	Max	Unit
FS0B					
FS0B _{VIL}	Low level Input voltage	0.7			V
FS0B _{VIH}	High level Input voltage	_	_	1.5	V
FS0B _{HYST}	Input voltage hysteresis	100	_	—	mV
FS0B _{VOL}	Low level output voltage (I = 2.0 mA)	_	_	0.4	V
FS0B _{RPD}	Internal pull down resistor	1	2	4	MΩ
FS0B _{ILIM}	Current limitation	4.0	_	22	mA
FS0B _{TSC}	Short to high filtering time	500	—	800	μs
FS0B _{FALL}	FS0B Falling time	_	_	10	μs

22.8.4 FS0B release

When the fail-safe output FS0B is asserted low by the device due to a fault, three conditions must be validated before allowing the pin to be released by the device. The conditions are:

• LBIST_OK = ABIST1_OK = ABIST2_OK = 1

- Fault Error Counter = 0
- FS_RELEASE_FS0B register filled with ongoing WD_SEED bit field (FS_WD_SEED register) reversed and complemented

Table 73. FS_RELEASE_FS0B register based on WD_SEED

WD_SEED[23:16]	B23	B22	B21	B20	B19	B18	B17	B16
FS_RELEASE_ FS0B	Not(B8)	Not(B9)	Not(B10)	Not(B11)	Not(B12)	Not(B13)	Not(B14)	Not(B15)
WD_SEED[15:8]	B15	B14	B13	B12	B11	B10	B9	B8
FS_RELEASE_ FS0B	Not(B16)	Not(B17)	Not(B18)	Not(B19)	Not(B20)	Not(B21)	Not(B22)	Not(B23)

22.8.5 STBY

STBY is an input that can be connected in the application to the MCU. The standby input pin polarity can be programmed through the STBY_POLARITY_OTP bit (CFG_DEVID_OTP register) to either active high in Standby mode/low in Normal mode or active low in Standby mode/high in Normal mode.

The STBY function is enabled via the STBY_EN_OTP bit (CFG_2_OTP register).

There are two possible paths to enter Standby mode, depending on the STBY_SAFE_DIS_OTP bit (CFG_2_OTP register) setting:

- The Standard path using only the STBY pin transition
- The Safety path using an I²C request (STBY_REQ bit in the FS_SAFE_IOS register) and the STBY pin transition

If the Safety path is used, a standby timing window register, enabled by the STBY_WINDOW_EN_OTP bit (CFG_2_OTP register), is used to define the maximum time between the I²C request and the STBY pin transition.

The standby timing window is configurable by I²C during the INIT_FS phase through the TIMING_WINDOW_STBY[3:0] bit field (FS_I_SAFE_INPUTS register).

 Table 74. Standby timing window

TIMING_WINDOW_STBY[3:0]	Configure the window duration
0000	Disable
0001	Reserved
0010	Reserved
0011	Reserved
0100	60 µs
0101	80 µs
0110	100 µs
0111	200 µs
1000	300 µs
1001	500 µs
1010 (default)	1 ms
1011	2 ms

Table 74. Standby timing windowcontinuea						
TIMING_WINDOW_STBY[3:0]	Configure the window duration					
1100	3 ms					
1101	5 ms					
1110	8 ms					
1111	10 ms					

 Table 74. Standby timing window...continued

22.9 Built in Self-Test (BIST)

22.9.1 Logical BIST

The Fail-safe state machine includes a Logical Built in Self-Test (LBIST) to verify the correct functionality of the safety logic monitoring. The LBIST is performed after each POR, or after each wake up from Standby. If the LBIST fails, RSTB and PGOOD are released but FS0B remains stuck low and cannot be released.

The flag LBIST_PASS (FS_DIAG_SAFETY register) is available through I²C for MCU diagnostics.

The typical LBIST duration is 3 ms and the maximum LBIST duration is 5 ms.

22.9.2 Analog BIST

The Fail-safe state machine includes two Analog Built in Self-Test (ABIST) to verify the correct functionality of the safety analog monitoring.

ABIST1 is executed automatically after each POR, or after each wake up from Standby. The assignment of which regulator is checked during ABIST1 is done by OTP.

ABIST2 is executed by I²C with the Vxxx_ABIST2 bit (FS_I_ABIST2_CTRL register) after the INIT_FS phase. If the ABIST fails, RSTB and PGOOD are released but FS0B remains stuck low and cannot be released. The flags ABIST1_OK and ABIST2_OK (both in FS_DIAG_SAFETY register) are available through I²C for MCU diagnostics.

Table 75. ABIST coverage

Parameter	Over voltage	Under voltage	Short to High	Low speed	High speed	ABIST1	ABIST2
VCOREMON	Х	Х				OTP	I ² C
VDDIO	Х	Х				OTP	l ² C
HVLDO_VMON	Х	Х				OTP	l ² C
VMONx	Х	Х				OTP	I ² C
OSC				Х	Х	Х	
V1p6D_FS	Х					Х	
PGOOD			Х			Х	
RSTB			Х			Х	
FS0B			Х			х	

Note: When waking up from standby mode, ABIST1 checks that the RSTB and PGOOD pins are at a high state. If the pins are low, an ABIST1 error will be detected.

Multi-Output PMIC with SMPS and LDO

Table '	76.	ABIST2	setting
---------	-----	--------	---------

VCORE_ABIST2	VCOREMON BIST executed during ABIST2
0 (default)	No ABIST2
1	VCOREMON BIST executed during ABIST2
Reset condition	POR
VDDIO_ABIST2	VDDIO BIST executed during ABIST2
0 (default)	No ABIST2
1	VDDIO BIST executed during ABIST2
Reset condition	POR
VMONx_ABIST2	VMONx BIST executed during ABIST2
0 (default)	No ABIST2
1	VMONx BIST executed during ABIST2
Reset condition	POR
HVLDO_VMON_ABIST2	HVLDO VMON BIST executed during ABIST2
0 (default)	No ABIST2
1	HVLDO VMON BIST executed during ABIST2
Reset condition	POR

An RSTB_DELAY_OTP bit is available to add a 5 ms delay between the end of the ABIST1 and RSTB/PGOOD release.

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground

Table 77. Electrical characteristics

Symbol	Parameter	Min	Тур	Max	Unit
ABIST		l.			
ABIST1 _{TDUR}	ABIST1 durationMIN with no voltage monitoring assigned by OTPMAX with all voltage monitoring assigned by OTP	0.2	_	1.4	ms
ABIST2 _{TDUR}	 ABIST2 duration MIN with no voltage monitoring selected by I²C MAX with all voltage monitoring selected by I²C 	0.2	_	1.4	ms

23 I²C

23.1 High level overview

The VR5510 uses an I^2C interface following the High-Speed mode definition up to 3.4 Mbit/s. I^2C interface protocol requires a device address for addressing the target IC on a multi-device bus. The VR5510 has two device addresses: one to access the Main logic and one to access the Fail-safe logic. These two I^2C addresses are set by OTP.

The I²C interface uses VDDIO as the main supply and is compatible with 1.8 V / 3.3 V input supply. The SCL and SDA pins can be pulled up to VDDIO by a 2.2 k Ω resistors.

Timing, diagrams, and further details can be found in the NXP I²C specification UM10204 rev6.

I²C message arrangement:

B39	B38	B37	B36	B35	B34	B33	B32	B31	B30	B29	B28	B27	B26	B25	B24
ID_6-0							R/W	0	0	Adr_5-0					
Device Address						Read/Write					Register	Addres	s		
B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	B9	B8
Data_15	Data_14	Data_13	Data_12	Data_11	Data_10	Data_9	Data_8	Data_7	Data_6	Data_5	Data_4	Data_3	Data_2	Data_1	Data_0
			Dat	a MSB							Data	LSB			
								B7	B6	B5	B4	B3	B2	B1	B0
								CRC_7	CRC_6	CRC_5	CRC_4	CRC_3	CRC_2	CRC_1	CRC_0
								CRC_7	CRC_6	CRC_5	CRC_4	CRC_3	CRC_2	CRC_1	CRC_0

23.2 Device address

The VR5510 has two device addresses: one to access the Main logic and one to access the Fail-safe logic. The device address is a 7-bit register that can be set using the I2CDEVADDR_OTP bitfield (CFG_I2C_OTP register).

The I^2C addresses have the following arrangement:

Table 78. I²C address arrangement

B39	B38	B37	B36	B35	B34	B33
0	1	OTP	0TP	OTP	OTP	0/1

• Bit 39: 0

• Bit 38: 1

- Bits 37 to 34: OTP value
- Bit 33: 0 to access the Main logic, 1 to access the Fail-safe logic

23.3 Cyclic Redundant Check

An 8-bit CRC is required for each Write and Read I^2C command. Computation of a cyclic redundancy check is derived from the mathematics of polynomial division, modulo two. The CRC polynomial used is $x^8+x^4+x^3+x^2+1$ (or 0x1D), and the SEED value is 0xFF.

CRC_7 = XOR (B38, B35, B32, B31, B24, B23, B22, B20, B17, B13, B12, B11, 1, 1, 1)

CRC_6 = XOR (B37, B34, B23, B22, B21, B19, B16, B12, B11, B10, 1, 1)

CRC_5 = XOR (B39, B36, B33, B30, B29, B22, B21, B20, B18, B15, B11, B10, B9, 1, 1, 1)

CRC_4 = XOR (B39, B38, B35, B32, B29, B28, B21, B20, B19, B17, B14, B10, B9, B8, 1, 1, 1, 1)

CRC_3 = XOR (B37, B35, B34, B32, B28, B27, B24, B23, B22, B19, B18, B17, B16, B12, B11, B9, B8, 1, 1, 1, 1)

CRC_2 = XOR (B39, B38, B36, B35, B34, B33, B32, B27, B26, B24, B21, B20, B18, B16, B15, B13, B12 B10, B8, 1,1,1,1,1,1)

CRC_1 = XOR (B37, B34, B33, B26, B25, B24, B22, B19, B15, B14, B13, B9, 1, 1, 1)

CRC_0 = XOR (B39, B36, B33, B32, B25, B24, B23, B21, B18, B14, B13, B12, B8, 1, 1, 1, 1)

Hint to calculate CRC with I^2C communication:

I²C write command: DEVADDR-W + REG_ADDR + MASTER_DATA_MSB + MASTER_DATA_LSB + CRC

→ CRC is calculated with bits from B39 to B8

I²C read sequence: DEVADDR-W + REG_ADDR + I2C_REPEAT_START + DEVADDR-R + SLAVE_DATA_MSB + SLAVE_DATA_LSB + CRC

→ CRC is calculated with bits from DEVADDR-R + REG_ADDR + SLAVE_DATA_MSB + SLAVE_DATA_LSB

23.4 Electrical characteristics

TA = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UVH to 36 V, unless otherwise specified. All voltages referenced to ground.

Symbol	Parameter	Min	Тур	Мах	Unit
I ² C					
VDDIO	I ² C interface power input	1.62	1.8	1.98	V
VDDIO	r C Intenace power input	2.97	3.3	3.63	V
F _{SCL}	SCL clock frequency	_		3.4	MHz
I2C _{VIL}	SCL, SDA Low level input voltage	0.3 x V _{DDIO}		—	V
I2C _{VIH}	SCL, SDA High level input voltage	_		0.7 x V _{DDIO}	V
SDA _{VOL}	Low level output voltage at SDA pin (I = 20 mA)	_		0.4	V
C _{I2C}	Input capacitance at SCL / SDA	_		10	pF
t _{SPSCL}	SLC pulse width filtering time, when 50 ns filter selected (Fast speed, Fast speed plus)	40	_	150	ns
t _{SPSDA}	SDA pulse width filtering time, when 50 ns filter selected (Fast speed, Fast speed plus)	40	_	150	ns
t _{SPHSCL}	SLC pulse width filtering time, when 10 ns filter selected (High speed)	10		25	ns
t _{SPHSDA}	SDA pulse width filtering time, when 10 ns filter selected (High speed)	10	_	25	ns

Table 79. Electrical characteristics

Multi-Output PMIC with SMPS and LDO

24 Register Mapping

Denister				Add	ress				Read / Write
Register	Main/FS	Adr_5	Adr_4	Adr_3	Adr_2	Adr_1	Adr_0	R/W	Read / Write
M_FLAG	0	0	0	0	0	0	0	0	Read only
M_MODE	0	0	0	0	0	0	1	0(W) /1(R)	Read / Write
M_SM_CTRL1	0	0	0	0	0	1	0	0(W) /1(R)	Read / Write
M_REG_CTRL1	0	0	0	0	0	1	1	0(W) /1(R)	Write only
M_REG_CTRL2	0	0	0	0	1	0	0	0(W) /1(R)	Read / Write
M_REG_CTRL3	0	0	0	0	1	0	1	0(W) /1(R)	Read / Write
M_TSD_CFG	0	0	0	0	1	1	0	0(W) /1(R)	Read / Write
M_AMUX	0	0	0	0	1	1	1	0(W) /1(R)	Read / Write
M_CLOCK1	0	0	0	1	0	0	0	0(W) /1(R)	Read / Write
M_CLOCK2	0	0	0	1	0	0	1	0(W) /1(R)	Read / Write
M_INT_MASK1	0	0	0	1	0	1	0	0(W) /1(R)	Read / Write
M_INT_MASK2	0	0	0	1	0	1	1	0(W) /1(R)	Read / Write
M_FLAG1	0	0	0	1	1	0	0	0(W) /1(R)	Read / Write
M_FLAG2	0	0	0	1	1	0	1	0(W) /1(R)	Read / Write
M_FLAG3	0	0	0	1	1	1	0	0(W) /1(R)	Read / Write
M_VMON_REGX	0	0	0	1	1	1	1	0(W) /1(R)	Read / Write
M_LVB1_SVS	0	0	1	0	0	0	0	0	Read only
M_LVB1_STBY_DVS	0	0	1	0	0	0	1	0(W) /1(R)	Read / Write
M_MEMORY0	0	1	0	1	0	0	1	0(W) /1(R)	Read / Write
M_MEMORY1	0	1	0	1	0	1	0	0(W) /1(R)	Read / Write
M_DEVICEID	0	1	0	1	0	1	1	0	Read only
FS_GRL_FLAGS	1	0	0	0	0	0	0	0	Read only

Multi-Output PMIC with SMPS and LDO

Table 80. Register mapping...continued

Register	-			Add	ress				Read / Write	
Register	Main/FS	Adr_5	Adr_4	Adr_3	Adr_2	Adr_1	Adr_0	R/W	Redu / Wille	
FS_I_OVUV_SAFE_REACTION1	1	0	0	0	0	0	1	0(W) /1(R)	Write during INIT then Read only	
FS_I_NOT_OVUV_SAFE_ REACTION1	1	0	0	0	0	1	0	0(W) /1(R)	Write during INIT then Read only	
FS_I_OVUV_SAFE_REACTION2	1	0	0	0	0	1	1	0(W) /1(R)	Write during INIT then Read only	
FS_I_NOT_OVUV_SAFE_ REACTION2	1	0	0	0	1	0	0	0(W) /1(R)	Write during INIT then Read only	
FS_I_ABIST2_CTRL	1	0	0	0	1	0	1	0(W) /1(R)	Write during INIT then Read only	
FS_I_NOT_ABIST2_CTRL	1	0	0	0	1	1	0	0(W) /1(R)	Write during INIT then Read only	
FS_I_WD_CFG	1	0	0	0	1	1	1	0(W) /1(R)	Write during INIT then Read only	
FS_I_NOT_WD_CFG	1	0	0	1	0	0	0	0(W) /1(R)	Write during INIT then Read only	
FS_I_SAFE_INPUTS	1	0	0	1	0	0	1	0(W) /1(R)	Write during INIT then Read only	
FS_I_NOT_SAFE_INPUTS	1	0	0	1	0	1	0	0(W) /1(R)	Write during INIT then Read only	
FS_I_FSSM	1	0	0	1	0	1	1	0(W) /1(R)	Write during INIT then Read only	
FS_I_NOT_FSSM	1	0	0	1	1	0	0	0(W) /1(R)	Write during INIT then Read only	
FS_I_SVS	1	0	0	1	1	0	1	0(W) /1(R)	Write during INIT then Read only	
FS_I_NOT_SVS	1	0	0	1	1	1	0	0(W) /1(R)	Write during INIT then Read only	
FS_WD_WINDOW	1	0	0	1	1	1	1	0(W) /1(R)	Read / Write	
FS_NOT_WD_WINDOW	1	0	1	0	0	0	0	0(W) /1(R)	Read / Write	

Multi-Output PMIC with SMPS and LDO

Bogiotor				Add	ress				Read / Write	
Register	Main/FS	Adr_5	Adr_4	Adr_3	Adr_2	Adr_1	Adr_0	R/W	Redu / Wille	
FS_WD_SEED	1	0	1	0	0	0	1	0(W) /1(R)	Read / Write	
FS_WD_ANSWER	1	0	1	0	0	1	0	0(W) /1(R)	Read / Write	
FS_OVUVREG_STATUS	1	0	1	0	0	1	1	0(W) /1(R)	Read / Write	
FS_RELEASE_FS0B	1	0	1	0	1	0	0	0(W) /1(R)	Read / Write	
FS_SAFE_IOS	1	0	1	0	1	0	1	0(W) /1(R)	Read / Write	
FS_DIAG_SAFETY	1	0	1	0	1	1	0	0(W) /1(R)	Read / Write	
FS_INTB_MASK	1	0	1	0	1	1	1	0(W) /1(R)	Read / Write	
FS_STATES	1	0	1	1	0	0	0	0(W) /1(R)	Read / Write	

Table 80. Register mapping...continued

25 Main I2C Register Mapping

25.1 M_FLAG register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	0	0	0	0	0	0	0	0
Read	DIE_ CENTER_ TEMPFLG_ G	VBOS_G	COM_ERR	PWRON_G	VPRE_G	BOOST_G	BUCK1_G	BUCK2_G
Reset	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
0	0	0	0	0	0	0	0
BUCK3_G	LDO1_G	LDO2_G	LDO3_G	HVLDO_G	STBY_TIMER_G	VSUP_G	TSD_BIST_ ERR_G
-	•	•	0	0	0	•	0

Product	data	sheet
1104401	~~~~	011000

Multi-Output PMIC with SMPS and LDO

	Description	Report a die center temperature Flag for the MCU
DIE_CENTER_	0	No event
TEMPFLG_G	1	Event occurred
	Reset condition	POR
	Description	Report a VBOS UVH event
VROS C	0	No event
VBOS_G	1	Event occurred
	Reset condition	POR
	Description	Report an I2C communication error
	0	No error
COM_ERR	1	Error occurred
	Reset condition	POR
	Description	Report a wake-up event: PWRON1 or PWRON2
	0	No wake event
PWRON_G	1	Wake event
	Reset condition	POR
	Description	Report an event on VPRE (status change or failure)
VPRE_G	0	No event
	1	Event occurred
	Reset condition	POR
	Description	Report an event on BOOST (status change or failure)
DOOST O	0	No event
BOOST_G	1	Event occurred
	Reset condition	POR
	Description	Report an event on BUCK1 (status change or failure)
	0	No event
BUCK1_G	1	Event occurred
	Reset condition	POR
	Description	Report an event on BUCK2 (status change or failure)
	0	No event
BUCK2_G	1	Event occurred
	Reset condition	POR
	Description	Report an event on BUCK3 (status change or failure)
	0	No event
BUCK3_G	1	Event occurred
	Reset condition	POR
LDO1_G	Description	Report an event on LDO1 (status change or failure)

Table 81. M_FLAG register description

VR5510

© NXP B.V. 2021. All rights reserved.

Table of M_FLAG regist	0	No event
	1	Event occurred
	Reset condition	POR
	Description	Report an event on LDO2 (status change or failure)
LDO2_G	0	No event
LDO2_G	1	Event occurred
	Reset condition	POR
	Description	Report an event on LDO3 (status change or failure)
LDO3_G	0	No event
LDO3_G	1	Event occurred
	Reset condition	POR
	Description	Report an event on HVLDO (status change or failure)
HVLDO_G	0	No event
HVLDO_G	1	Event occurred
	Reset condition	POR
	Description	Report a Standby timer expiration
STBY_TIMER_G	0	No error
STBT_TIMER_G	1	Standby timer expiration
	Reset condition	POR
	Description	Report a VSUP UVL, UVH and UV7
VSUP_G	0	No event
V30F_G	1	Event occurred
	Reset condition	POR
	Description	Report a TSD event
TSD_BIST_ERR_G	0	No event
	1	Event occurred
	Reset condition	POR

Table 81. M_FLAG register description...continued

25.2 M_MODE register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	0	0	0	0	0	0	0	0
Read	Reserved							
Reset	0	0	0	0	0	0	0	0

VR5510 Product data sheet

Multi-Output PMIC with SMPS and LDO

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
0	EXT_ FIN_DIS	0	PWRON2_ DSM_EN	STBY_ PGOOD_ TEST_LVL	PWRON2DIS	PWRON1DIS	STBY_ PGOOD_ TEST_EN
PLL_ LOCKED	Reserved	MAIN_ NORMAL	PWRON2_ DSM_EN	STBY_ PGOOD_ TEST_LVL	PWRON2DIS	PWRON1DIS	STBY_ PGOOD_ TEST_EN
0	0	0	0	0	0	0	0

Table 82. M_MODE register description

TUDIC 02. IM_INODE TOGIST		
	Description	Enable or disable the Standby PGOOD test function (only available if OTP enable)
STBY_PGOOD_	0	Disabled
TEST_EN	1	Enabled
	Reset condition	POR
	Description	Disable the wake-up feature on PWRON1 input
PWRON1DIS	0	Wake up enabled
FWRONIDIS	1	Wake up disabled
	Reset condition	POR
	Description	Disable the wake-up feature on PWRON2 input
PWRON2DIS	0	Wake up enabled
FWRONZDIS	1	Wake up disabled
	Reset condition	POR
	Description	Change the STBY_PGOOD output level if STBY_PGOOD_TEST_EN = 1
STBY_PGOOD_	0	High
TEST_LVL	1	Low
	Reset condition	POR
	Description	Enable / Disable Deep Sleep Mode request via the PWRON2 pin if DSM_ EN_OTP = 1
PWRON2_DSM_EN	0	No transition to DSM
	1	Transition to DSM
	Reset condition	POR
	Description	Main state machine status
MAIN_NORMAL	0	Main state machine not in normal mode
	1	Main state machine is in normal mode (M15)
	Reset condition	POR
	Description	Disable the external FIN selection at PLL input
EXT_FIN_DIS	0	No effect
	1	Disable FIN selection
	Reset condition	POR

VR5510

© NXP B.V. 2021. All rights reserved.

Multi-Output PMIC with SMPS and LDO

Table 82. M_MODE register description...continued

	Description	Indicate if the PLL is locked
PLL_LOCKED	0	Not Locked
	1	Locked
	Reset condition	POR

25.3 M_SM_CTRL1 register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	TI	MER_STBY_	WINDOW [3:0	D]	0	STBY_ TIMER_EN	0	0
Read	TI	MER_STBY_	WINDOW [3:0	D]	RESE RVED	STBY_ TIMER_EN	RESERVED	RESERVED
Reset	0	0	0	0	0	OTP	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
0	0	0	0	0	0	0	GOTO_OFF
RESERVED							
0	0	0	0	0	0	0	0

Table 83. M_SM_CTRL1 register description

	Description	Entry to OFF mode/state		
GOTO_OFF	0	No effect; Device remains in current state		
GOTO_OFF	1	Device will enter OFF mode (M1)		
	Reset condition	POR		
	Description	Enable or disable the standby timer		
STBY_TIMER_EN	0	Disabled		
STBT_TIMER_EN	1	Enabled		
	Reset condition	POR		
	Description	Set the standby timer window duration (ms)		
TIMER_STBY_	[0,1,10,11,100,101,110,111]	[16,32,128,512,1024,4096,8192,16384]		
WINDOW [3:0]	[1000,1001,1010,1011 ,1100,1101,1110,1111]	[65536,131072,262144,524288,1048576,2097152,419430 4,8388608]		
	Reset condition	POR		

25.4 M_REG_CTRL1 register

Return to Register Map

Multi-Output PMIC with SMPS and LDO

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	VPREDIS	BOOSTDIS	BUCK1DIS	BUCK2DIS	BUCK3DIS	LDO1DIS	LDO2DIS	LDO3DIS
Read	RESERVED							
Reset	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
RESERVED	BOOSTEN	BUCK1EN	BUCK2EN	BUCK3EN	LDO1EN	LDO2EN	LDO3EN
RESERVED							
0	0	0	0	0	0	0	0

Table 84. M_REG_CTRL1 register description

LD ion PC n Er no	o effect (regulator remains in existing state) DO3 Enable Request OR nable request of LDO2 o effect (regulator remains in existing state)
ion PC n Er no	OR nable request of LDO2
n Er no	nable request of LDO2
no	-
	effect (regulator remains in existing state)
LC	School (regulator remains in existing state)
	DO2 Enable Request
ion PC	OR
n Er	nable request of LDO1
no	o effect (regulator remains in existing state)
LC	DO1 Enable Request
ion PC	OR
n Er	nable request of BUCK3
no	o effect (regulator remains in existing state)
BL	UCK3 Enable Request
ion PC	OR
n Er	nable request of BUCK2
no	o effect (regulator remains in existing state)
BL	UCK2 Enable Request
ion PC	OR
n Er	nable request of BUCK1
no	o effect (regulator remains in existing state)
BL	UCK1 Enable Request
ion PC	OR
n Er	nable request of BOOST
	o effect (regulator remains in existing state)
or	

Product data sheet

	G_CTRL1 register des 1	BOOST Enable Request				
_	Reset condition	POR				
-	Description	Disable request of LDO3				
	0	no effect (regulator remains in existing state)				
-	1	LDO3 Disable Request				
	Reset condition	POR				
	Description	Disable request of LDO3				
	0	no effect (regulator remains in existing state)				
LDO3DIS	1	LDO3 Disable Request				
	Reset condition	POR				
	Description	Disable request of LDO2				
	0	no effect (regulator remains in existing state)				
LDO2DIS	1	LDO2 Disable Request				
_	Reset condition	POR				
	Description	Disable request of LDO1				
LDO1DIS	0	no effect (regulator remains in existing state)				
	1	LDO1 Disable Request				
	Reset condition	POR				
	Description	Disable request of BUCK3				
	0	no effect (regulator remains in existing state)				
BUCK3DIS	1	BUCK3 Disable Request				
	Reset condition	POR				
	Description	Disable request of BUCK2				
BUCK2DIS	0	no effect (regulator remains in existing state)				
BUCKZDIS	1	BUCK2 Disable Request				
	Reset condition	POR				
	Description	Disable request of BUCK1				
BUCK1DIS	0	no effect (regulator remains in existing state)				
BUCKIDIS	1	BUCK1 Disable Request				
	Reset condition	POR				
	Description	Disable request of BOOST				
BOOSTDIS	0	no effect (regulator remains in existing state)				
	1	BOOST Disable Request				
_	Reset condition	POR				
	Description	Disable request of VPRE in case of 2xVR5510 are used				
VPREDIS	0	no effect (regulator remains in existing state)				
_	1	VPRE Disable Request				

Table 84. M_REG_CTRL1 register description...continued

Table 84. M_R	Table 84. M_REG_CTRL1 register descriptioncontinued				
	Reset condition	POR			

25.5 M_REG_CTRL2 register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	0	0	VPRESRHS	_MSB [1:0]	0	0	0	HVLDODIS
Read	RESERVED	RESERVED	VPRESRHS	_MSB [1:0]	RESERVED	RESERVED	RESERVED	RESERVED
Reset	0	0	O	ſP	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
HVLDOEN	VPRE_ PLDWN_DIS	VBSTSR [1:0]		VPRESRLS [1:0]		VPRESRHS [1:0]	
RESERVED	VPRE_ PLDWN_DIS	VBSTSR [1:0]		VPRESF	RLS [1:0]	VPRESF	RHS [1:0]
0	0	OTP		OTP		OTP	

Table 85. M_REG_CTRL2 register description

	Description	VPRE High Side pull down slew rate control
VPRESRHS [1:0]	10	520mA typical drive capability - fast
VFRESRHS[1.0]	11	900mA typical drive capability - ultra fast
	Reset condition	POR
	Description	VPRE Low Side slew rate control
	00	130mA typical drive capability - slow
VPRESRLS [1:0]	01	260mA typical drive capability - medium
	10	520mA typical drive capability - fast
	11	900mA typical drive capability - ultra fast
	Reset condition	POR
	Description	VBOOST Low Side slew rate control
	00	50V/us
VBSTSR [1:0]	01	100V/us
VD313K[1.0]	10	300V/us - fast
	11	500V/us - ultra fast
	Reset condition	POR
	Description	Force disable of VPRE pull down
VPRE_ PLDWN_DIS	0	No effect (VPRE pull down will be automatically controlled by the logic)
. 28	1	VPRE pull down is disabled

	Reset condition	POR
	Description	Enable of HVLDO
HVLDOEN	0	No effect (regulator remains in existing state)
HVEDGEN	1	Enable
	Reset condition	POR
	Description	Disable of HVLDO
HVLDODIS	0	No effect (regulator remains in existing state)
HVEDODIS	1	HVLDO Disable
	Reset condition	POR
	Description	VPRE High Side pull up slew rate control
	00	130mA typical drive capability - slow
VPRESRHS_	01	260mA typical drive capability - medium
MSB [1:0]	10	520mA typical drive capability - fast
	11	900mA typical drive capability - ultra fast
	Reset condition	POR

Table 85. M_REG_CTRL2 register description...continued

25.6 M_REG_CTRL3 register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	0	LDO3 _ STBY	0	LDO2_ STBY	0	LDO1_ STBY	0	HVLDO _STBY
Read	RESERVED	LDO3 _ STBY	RESERVED	LDO2_ STBY	RESERVED	LDO1_ STBY	RESERVED	HVLDO _STBY
Reset	0	1	0	1	0	1	0	1

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
0	VPREV_ STBY	0	BUCK3_ STBY	0	BUCK2_ STBY	0	BUCK1_ STBY
RESERVED	VPREV_ STBY	RESERVED	BUCK3_ STBY	RESERVED	BUCK2_ STBY	RESERVED	BUCK1_ STBY
0	1	0	1	0	1	0	1

Table 86. M_REG_CTRL3 register description

	Description	Enable/Disable BUCK1 in standby mode
BUCK1_STBY	0	Disabled
	1	Enabled
	Reset condition	POR

Multi-Output PMIC with SMPS and LDO

	RL3 register descri	
	Description	Enable/Disable BUCK2 in standby mode
BUCK2_STBY	0	Disabled
	1	Enabled
	Reset condition	POR
	Description	Enable/Disable BUCK3 in standby mode
BUCK3_STBY	0	Disabled
BUCKS_STET	1	Enabled
	Reset condition	POR
	Description	Set the VPRE voltage in standby mode (only if VPREV_STBY_EN_OTP = 1)
VPREV_STBY	0	3.3V
VFICEV_STBT	1	3V (setting only available if VPRE is set at 3.3V in normal mode)
	Reset condition	POR
	Description	Enable/Disable HVLDO in standby mode
HVLDO_STBY	0	Disabled
HVLDO_31B1	1	Enabled
	Reset condition	POR
	Description	Enable/Disable LDO1 in standby mode
LDO1_STBY	0	Disabled
LDOI_SIBI	1	Enabled
	Reset condition	POR
	Description	Enable/Disable LDO2 in standby mode
LDO2_STBY	0	Disabled
	1	Enabled
	Reset condition	
	Description	Enable/Disable LDO3 in standby mode
LDO2 STRV	0	Disabled
LDO3_STBY	1	Enabled
	Reset condition	POR

Table 86. M_REG_CTRL3 register description...continued

25.7 M_TSD_CFG register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	0	0	0	0	0	DIE_C	ENTER_TEM	P [2:0]
Read	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	DIE_CENTER_TEMP [2:0]		P [2:0]
Reset	0	0	0	0	0		OTP	

VR5510 Product data sheet

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
BOOST_	BUCK1_	BUCK2_	BUCK3_	LDO1_	LDO2_	LDO3_	HVLDO_
TSDCFG							
BOOST_	BUCK1_	BUCK2_	BUCK3_	LDO1_	LDO2_	LDO3_	HVLDO_
TSDCFG							
OTP							

Table 87. M_TSD_CFG register description

	Description	Behavior in case of thermal shutdown
HVLDO_TSDCFG	0	HVLDO Shutdown
HVLDO_ISDEFG	1	HVLDO Shutdown + state machine transition to DFS
	Reset condition	POR
	Description	Behavior in case of thermal shutdown
	0	LDO3 Shutdown
LDO3_TSDCFG	1	LDO3 Shutdown + state machine transition to DFS
	Reset condition	POR
	Description	Behavior in case of thermal shutdown
	0	LDO2 Shutdown
LDO2_TSDCFG	1	LDO2 Shutdown + state machine transition to DFS
	Reset condition	POR
	Description	Behavior in case of thermal shutdown
LDO1_TSDCFG	0	LDO1 Shutdown
LDOI_ISDOFG	1	LDO1 Shutdown + state machine transition to DFS
	Reset condition	POR
	Description	Behavior in case of thermal shutdown
BUCK3_TSDCFG	0	BUCK3 Shutdown
BOOKS_13DOLG	1	BUCK3 Shutdown + state machine transition to DFS
	Reset condition	POR
	Description	Behavior in case of thermal shutdown
BUCK2_TSDCFG	0	BUCK2 Shutdown
BUCK2_13DCFG	1	BUCK2 Shutdown + state machine transition to DFS
	Reset condition	POR
	Description	Behavior in case of thermal shutdown
BUCK1_TSDCFG	0	BUCK1 Shutdown
Booki_ioboi o	1	BUCK1 Shutdown + state machine transition to DFS
	Reset condition	POR
BOOST_TSDCFG	Description	Behavior in case of thermal shutdown
50001_10D0F0	0	BOOST Shutdown

Multi-Output PMIC with SMPS and LDO

	1	BOOST Shutdown + state machine transition to DFS
	Reset condition	POR
	Description	Die center temperature indicator
	000	75°C
	001	90°C
DIE_CENTER_	010	105°C
TEMP[2:0]	011	120°C
	100	135°C
	101	150°C
	Reset condition	POR

Table 87. M_TSD_CFG register description...continued

25.8 M_AMUX register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	0	0	0	0	0	0	0	0
Read	RESERVED							
Reset	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
0	0	RATIO			AMUX [4:0]		
RESERVED	RESERVED	RATIO			AMUX [4:0]		
0	0	0	0	0	0	0	0

Table 88. M_AMUX register description

AMUX [4:0]	Refer to Table 21	Refer to Table 21					
	Description	Selection of divider ratio for VSUP, PWRON1 inputs					
RATIO	0	Ratio = 20					
RAHO	1	Ration = 34					
	Reset condition	POR					

25.9 M_CLOCK1 register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	MOD_CONF		FOUT_MUX_SEL[3:0]				T_PHASE[2:	0]
Read	MOD_CONF		FOUT_MUX_SEL[3:0]			FOU	T_PHASE[2:	0]

VR5510

© NXP B.V. 2021. All rights reserved.

Multi-Output PMIC with SMPS and LDO

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Reset	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
FOUT_SEL	EXT_ FIN_SEL	FIN_DIV	MOD_EN		CLK_INT_	FREQ[3:0]	
FOUT_SEL	RESERVED	FIN_DIV	MOD_EN		CLK_INT_	FREQ[3:0]	
0	0	0	0	0	0	0	0

Table 89. M_CLOCK1 register description

CLK_INT_FREQ [3:0]	Manual frequency tun	ing: Refer to Table 17
	Description	CLOCK Modulation
MOD_EN	0	Modulation Disable
MOD_EN	1	Modulation Enable
	Reset condition	POR
	Description	FIN input signal divider selection
FIN_DIV	0	Divider by 1
	1	Divider by 6
	Reset condition	POR
	Description	EXT FIN selection at PLL input
EXT_FIN_SEL	0	Disabled
EXT_FIN_SEL	1	Enabled
	Reset condition	POR
	Description	FOUT frequency selection (CLK1 or CLK2)
FOUT_SEL	0	CLK1
TOOT_SEE	1	CLK2
	Reset condition	POR
	Description	FOUT phase and delay setting
	000	No delay/phase
	001	1 clk cycle from OSCPLL
	010	2 clk cycle from OSCPLL
FOUT_PHASE[2:0]	011	3 clk cycle from OSCPLL
	100	4 clk cycle from OSCPLL
	101	5 clk cycle from OSCPLL
	110	6 clk cycle from OSCPLL
	111	7 clk cycle from OSCPLL
	Reset condition	POR

VR5510

© NXP B.V. 2021. All rights reserved.

	gister descriptioncommuned						
FOUT_MUX_SEL [3:0]	Refer to Table 15						
	Description	CLOCK Modulation Configuration (spread spectrum)					
MOD CONF	0	range +- 5% 23.15 kHz					
	1	range +- 5% 92.6 kHz					
	Reset condition	POR					

Table 89. M_CLOCK1 register description...continued

25.10 M_CLOCK2 register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	0	0	0	0	0	0	0	0
Read	RESE RVED	RESERVED						
Reset	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
0	0	0	0	0	0		V_POWER_ LK [1 :0]
RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED		V_POWER_ LK [1 :0]
0	0	0	0	0	0	0	0

Table 90. M_CLOCK2 register description

	Description	Low Power Clock frequency selection
	00	100 kHz
LOW_POWER_	01	100 kHz
CLK [1:0]	10	300 kHz
	11	600 kHz
	Reset condition	POR

25.11 M_INT_MASK1 register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	HVLDO OC_M	0	BUCK1O C_M	BUCK2O C_M	BUCK3OC_ M	LDO1OC_M	LDO2OC_M	LDO3OC_M
Read	HVLDO OC_M	RESERVED	BUCK1O C_M	BUCK2O C_M	BUCK3OC_ M	LDO1OC_M	LDO2OC_M	LDO3OC_M

Multi-Output PMIC with SMPS and LDO

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Reset	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
HVLDO_	BOOST_	BUCK1_	BUCK2_	BUCK3_	LDO1_	LDO2_	LDO3_
TSDFLG_M							
HVLDO_	BOOST_	BUCK1_	BUCK2_	BUCK3_	LDO1_	LDO2_	LDO3_
TSDFLG_M							
0	0	0	0	0	0	0	0

Table 91. M_INT_MASK1 register description

	i legister description	•
	Description	Inhibit INTERRUPT for LDO3 over temperature shutdown event
LDO3_TSDFLG_M	0	INT not masked
	1	INT masked
	Reset condition	POR
	Description	Inhibit INTERRUPT for LDO2 over temperature shutdown event
LDO2_TSDFLG_M	0	INT not masked
LDOZ_ISDFLG_M	1	INT masked
	Reset condition	POR
	Description	Inhibit INTERRUPT for LDO1 over temperature shutdown event
LDO1_TSDFLG_M	0	INT not masked
LDO1_ISDFLG_M	1	INT masked
	Reset condition	POR
	Description	Inhibit INTERRUPT for BUCK3 over temperature shutdown event
BUCK3_TSDFLG_M	0	INT not masked
BUCK3_ISDFLG_M	1	INT masked
	Reset condition	POR
	Description	Inhibit INTERRUPT for BUCK2 over temperature shutdown event
BUCK2_TSDFLG_M	0	INT not masked
BUCKZ_ISDFLG_M	1	INT masked
	Reset condition	POR
	Description	Inhibit INTERRUPT for BUCK1 over temperature shutdown event
BUCK1_TSDFLG_M	0	INT not masked
BUCKI_ISDFLG_M	1	INT masked
	Reset condition	POR
BOOST_TSDFLG_M	Description	Inhibit INTERRUPT for BOOST over temperature shutdown event
BOOSI_ISDFLG_M	0	INT not masked

	1	INT masked			
	Reset condition	POR			
	Description	Inhibit INTERRUPT for HVLDO over temperature shutdown event			
	0	INT not masked			
HVLDO_TSDFLG_M	1	INT masked			
	Reset condition	POR			
	Description	Inhibit INTERRUPT for LDO3 Over current			
LDO3OC_M	0	INT not masked			
LD030C_W	1	INT masked			
	Reset condition	POR			
	Description	Inhibit INTERRUPT for LDO2 Over current			
LDO2OC_M	0	INT not masked			
	1	INT masked			
	Reset condition	POR			
	Description	Inhibit INTERRUPT for LDO1 Over current			
LDO10C_M	0	INT not masked			
	1	INT masked			
	Reset condition	POR			
	Description	Inhibit INTERRUPT for BUCK3 Over current			
вискзос_м	0	INT not masked			
BUCKSUC_W	1	INT masked			
	Reset condition	POR			
	Description	Inhibit INTERRUPT for BUCK2 Over current			
BUCK2OC_M	0	INT not masked			
BUCK20C_W	1	INT masked			
	Reset condition	POR			
	Description	Inhibit INTERRUPT for BUCK1 Over current			
BUCK1OC_M	0	INT not masked			
BUCKIUC_W	1	INT masked			
	Reset condition	POR			
	Description	Inhibit INTERRUPT for HVLDO Over current			
HVLDOOC_M	0	INT not masked			
	1	INT masked			
	Reset condition	POR			

Table 91. M_INT_MASK1 register description...continued

25.12 M_INT_MASK2 register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	DIE_ CENTER_ TEMP FLG_M	COM_ ERR_M	VBOS UVH_M	VBOOST UVH_M	VBOOST OV_M	TSD_ BIST_ ERR_ FLG_M	HVLDO_ INPUT UVL_M	VPRE OV2_M
Read	DIE_ CENTER_ TEMP FLG_M	COM_ ERR_M	VBOS UVH_M	VBOOST UVH_M	VBOOST OV_M	TSD_ BIST_ ERR_ FLG_M	HVLDO_ INPUT UVL_M	VPRE OV2_M
Reset	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
VPREOC_M	VPREUVL_M	VPREUVH_M	VSUPUV7_M	VSUP UVL_M	VSUP UVH_M	PWRON2 FLG_M	PWRON1 FLG_M
VPREOC_M	VPREUVL_M	VPREUVH_M	VSUPUV7_M	VSUP UVL_M	VSUP UVH_M	PWRON2 FLG_M	PWRON1 FLG_M
0	0	0	0	0	0	0	0

Table 92. M_INT_MASK2 register description

	z register description	
	Description	Inhibit interrupt for transition on PWRON1
PWRON1FLG_M	0	INT not masked
FWRONTEG_M	1	INT masked
	Reset condition	POR
	Description	Inhibit interrupt for transition on PWRON2
PWRON2FLG_M	0	INT not masked
FWRONZFLG_W	1	INT masked
	Reset condition	POR
	Description	Inhibit interrupt for VSUP_UVH
VSUPUVH M	0	INT not masked
V30F0VH_W	1	INT masked
	Reset condition	POR
	Description	Inhibit interrupt for VSUP_UVL
VSUPUVL_M	0	INT not masked
VSUPUVL_IVI	1	INT masked
	Reset condition	POR
	Description	Inhibit interrupt for VSUP_UV7
VSUPUV7_M	0	INT not masked
V30F0V7_IVI	1	INT masked
	Reset condition	POR

Multi-Output PMIC with SMPS and LDO

TADIE 92. WI_INT_WASK	(2 register description			
	Description	Inhibit interrupt for VPRE_UVH		
VPREUVH_M	0	INT not masked		
	1	INT masked		
	Reset condition	POR		
	Description	Inhibit interrupt for VPRE_UVL		
VPREUVL_M	0	INT not masked		
	1	INT masked		
	Reset condition	POR		
	Description	Inhibit interrupt for VPRE overcurrent event		
VPREOC_M	0	INT not masked		
	1	INT masked		
	Reset condition	POR		
	Description	Inhibit interrupt for VPRE OV event		
VPREOV2_M	0	INT not masked		
VFREOV2_W	1	INT masked		
	Reset condition	POR		
	Description	Inhibit interrupt for HVLDO UVL		
HVLDO_	0	INT not masked		
INPUT_UVL_M	1	INT masked		
	Reset condition	POR		
	Description	Inhibit interrupt for TSD BIST error		
TSD_BIST_	0	INT not masked		
ERR_FLG_M	1	INT masked		
	Reset condition	POR		
	Description	Inhibit interrupt for VBOOST OV		
	0	INT not masked		
VBOOSTOV_M	1	INT masked		
	Reset condition	POR		
	Description	Inhibit interrupt for VBOOST UVH		
	0	INT not masked		
VBOOSTUVH_M	1	INT masked		
	Reset condition	POR		
	Description	Inhibit interrupt for VBOS UVH		
	0	INT not masked		
VBOSUVH_M	1	INT masked		
	Reset condition	POR		
COM_ERR_M	Description	Inhibit interrupt for I2C communication error		

Table 92. M_INT_MASK2 register description...continued

VR5510

© NXP B.V. 2021. All rights reserved.

Multi-Output PMIC with SMPS and LDO

	0	INT not masked						
	1	INT masked						
	Reset condition	POR						
	Description	Inhibit interrupt for thermal event on the central thermal sensor						
DIE_CENTER_	0	INT not masked						
TEMPFLG_M	1	INT masked						
	Reset condition	POR						

Table 92. M_INT_MASK2 register description...continued

25.13 M_FLAG1 register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	HVLDOOC	0	BUCK10C	BUCK2OC	BUCK3OC	LDO10C	LDO2OC	LDO3OC
Read	HVLDOOC	RESERVED	BUCK10C	BUCK2OC	BUCK3OC	LDO10C	LDO2OC	LDO3OC
Reset	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
HVLDO_	BOOST_	BUCK1_	BUCK2_	BUCK3_	LDO1_	LDO2_	LDO3_
TSDFLG							
HVLDO_	BOOST_	BUCK1_	BUCK2_	BUCK3_	LDO1_	LDO2_	LDO3_
TSDFLG							
0	0	0	0	0	0	0	0

When the device starts-up, clear the flags by writing 1 to all bits.

Table 93. M_FLAG1 register description

LDO3_TSDFLG	Description	LDO3 over temperature shutdown event
	0	No event
	1	Event occurred
	Reset condition	POR / Clear on Write (write '1')
LDO2_TSDFLG	Description	LDO2 over temperature shutdown event
	0	No event
	1	Event occurred
	Reset condition	POR / Clear on Write (write '1')
LDO1_TSDFLG	Description	LDO1 over temperature shutdown event
	0	No event
	1	Event occurred
	Reset condition	POR / Clear on Write (write '1')
BUCK3_TSDFLG	Description	BUCK3 over temperature shutdown event

© NXP B.V. 2021. All rights reserved.

Multi-Output PMIC with SMPS and LDO

Flag M_FLAG1 register descriptioncontinued				
	0	No event		
	1	Event occurred		
	Reset condition	POR / Clear on Write (write '1')		
	Description	BUCK2 over temperature shutdown event		
BUCK2_TSDFLG	0	No event		
	1	Event occurred		
	Reset condition	POR / Clear on Write (write '1')		
	Description	BUCK1 over temperature shutdown event		
BUCK1_TSDFLG	0	No event		
BOCKT_TODI LO	1	Event occurred		
	Reset condition	POR / Clear on Write (write '1')		
	Description	BOOST over temperature shutdown event		
BOOST_TSDFLG	0	No event		
BOOST_ISDEEG	1	Event occurred		
	Reset condition	POR / Clear on Write (write '1')		
	Description	HVLDO over temperature shutdown event		
	0	No event		
HVLDO_TSDFLG	1	Event occurred		
	Reset condition	POR / Clear on Write (write '1')		
	Description	LDO3 Over current		
LDO3OC	0	No event		
LDUSUC	1	Event occurred		
	Reset condition	POR / Clear on Write (write '1')		
	Description	LDO2 Over current		
	0	No event		
LDO2OC	1	Event occurred		
	Reset condition	POR / Clear on Write (write '1')		
	Description	LDO1 Over current		
100400	0	No event		
LDO10C	1	Event occurred		
	Reset condition	POR / Clear on Write (write '1')		
	Description	BUCK3 Over current		
BUOKAGO	0	No event		
BUCK3OC	1	Event occurred		
	Reset condition	POR / Clear on Write (write '1')		
BUOKAGO	Description	BUCK2 Over current		
BUCK2OC	0	No event		
	L			

Table 93. M_FLAG1 register description...continued

VR5510

Multi-Output PMIC with SMPS and LDO

	•		
	1	Event occurred	
	Reset condition	POR / Clear on Write (write '1')	
	Description	BUCK1 Over current	
BUCK1OC	0	No event	
BUCKIOC	1	Event occurred	
	Reset condition	POR / Clear on Write (write '1')	
	Description	HVLDO Over current	
HVLDOOC	0	No event	
INVEDOOC	1	Event occurred	
	Reset condition	POR / Clear on Write (write '1')	

Table 93. M_FLAG1 register description...continued

25.14 M_FLAG2 register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	DIE_ CENTER_ TEMPFLG	TSD_BIST_ ERR_FLG	VBOSUVH	VBOO STUVH	VBOO STOV	STBY_ TIMER_ FLG	HVLDO_ INPUT_ UVL	VPRE_ FB_OV
Read	DIE_ CENTER_ TEMPFLG	TSD_BIST_ ERR_FLG	VBOSUVH	VBOO STUVH	VBOO STOV	STBY_ TIMER_ FLG	HVLDO_ INPUT_ UVL	VPRE_ FB_OV
Reset	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
VPREOC	VPREUVL	VPREUVH	VSUPUV7	VSUPUVL	VSUPUVH	PWRO N2FLG	PWRO N1FLG
VPREOC	VPREUVL	VPREUVH	VSUPUV7	VSUPUVL	VSUPUVH	PWRO N2FLG	PWRO N1FLG
0	0	0	0	0	0	0	0

When the device starts-up, clear the flags by writing 1 to all bits.

Table 94. M_FLAG2 register description

	Description	PWRON1 wake up source flag
PWRON1FLG	0	No event
PWRONIFLG	1	Low to high wake event occurred
	Reset condition	POR / Clear on Write (write '1')
	Description	PWRON2 wake up source flag
PWRON2FLG	0	No event
	1	Low to high wake event occurred

Multi-Output PMIC with SMPS and LDO

ble 94. M_FLAG2 register descriptioncontinued					
	Reset condition	POR / Clear on Write (write '1')			
	Description	VSUP_UVH event			
VSUPUVH	0	No event			
_	1	Event occurred			
	Reset condition	POR / Clear on Write (write '1')			
-	Description	VSUP_UVL event			
VSUPUVL	0	No event			
	1	Event occurred			
	Reset condition	POR / Clear on Write (write '1')			
_	Description	VSUP_UV7 event			
VSUPUV7	0	No event			
V001 0V7	1	Event occurred			
	Reset condition	POR / Clear on Write (write '1')			
	Description	VPRE_UVH event			
VPREUVH	0	No event			
VFREUVN	1	Event occurred			
	Reset condition	POR / Clear on Write (write '1')			
	Description	VPRE_UVL event			
VPREUVL	0	No event			
VFREUVL	1	Event occurred			
	Reset condition	POR / Clear on Write (write '1')			
	Description	VPRE overcurrent event			
VPPEOO	0	No event			
VPREOC	1	Event occurred			
	Reset condition	POR / Clear on Write (write '1')			
	Description	VPRE_FB_OV event			
	0	No event			
VPRE_FB_OV	1	Event occurred			
	Reset condition	POR / Clear on Write (write '1')			
	Description	HVLDO input UVL event			
	0	No event			
HVLDO_INPUT_UVL	1	Event occurred			
	Reset condition	POR / Clear on Write (write '1')			
	Description	STBY Timer event			
	0	No event			
STBY_TIMER_FLG	1	Event occurred			
	Reset condition	POR / Clear on Write (write '1')			

Table 94. M_FLAG2 register description...continued

VR5510

Product data sheet

Multi-Output PMIC with SMPS and LDO

Table 94. M_FLAG2 register descriptioncontinued				
	Description	VBOOST OV event		
VBOOSTOV	0	No event		
VBOOSTOV	1	Event occurred		
	Reset condition	POR / Clear on Write (write '1')		
	Description	VBOOST UVH event		
VBOOSTUVH	0	No event		
VBOOSTUVH	1	Event occurred		
	Reset condition	POR / Clear on Write (write '1')		
	Description	VBOS UVH event		
VBOSUVH	0	No event		
VB030VH	1	Event occurred		
	Reset condition	POR / Clear on Write (write '1')		
	Description	TSD BIST flag		
TSD_BIST_ERR_FLG	0	TSD BIST OK		
ISD_BIST_ERK_FLG	1	TSD BIST NOT OK		
	Reset condition	POR / Clear on Write (write '1')		
	Description	Report a thermal event on the central thermal sensor		
DIE_CENTER_	0	No event		
TEMPFLG	1	Event occurred		
	Reset condition	POR / Clear on Write (write '1')		

Table 94. M_FLAG2 register description...continued

25.15 M_FLAG3 register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	0	0	0	0	0	0	0	0
Read	VPRE_ST	HVLDO_ST	BOOST_ST	BUCK1_ST	BUCK2_ST	BUCK3_ST	LDO1_ST	LDO2_ST
Reset	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
0	0	0	0	0	0	I2C_M_CRC	I2C_M_REQ
LDO3_ST	FIN_ CLKWD_OK	RESERVED	RESERVED	PWRON2RT	PWRON1RT	I2C_M_CRC	I2C_M_REQ
0	0	0	0	0	0	0	0

When the device starts-up, clear the flags by writing 1 to all bits.

Multi-Output PMIC with SMPS and LDO

Table 95.	M_FLA	G3 register	description
-----------	-------	-------------	-------------

	Description	Invalid main domain I2C access			
I2C_M_REQ	0	No Error			
	1	Error occurred			
	Reset condition	POR / Clear on Write (write '1')			
	Description	I2C communication CRC error			
I2C M CRC	0	No error			
I2C_M_CRC	1	Error occurred			
	Reset condition	POR / Clear on Write (write '1')			
	Description	Report event: PWRON1 real time state			
PWRON1RT	0	PWRON1 is low level			
	1	PWRON1 is high			
	Reset condition	Real time information			
	Description	Report event: PWRON2 real time state			
PWRON2RT	0	PWRON2 is low level			
PWRONZRI	1	PWRON2 is high			
	Reset condition	Real time information			
	Description	CLK watchdog monitoring			
	0	Not used or out of range			
FIN_CLKWD_OK	1	FIN_CLKWD_OK			
	Reset condition	POR			
	Description	LDO3 state			
	0	regulator OFF			
LDO3_ST	1	regulator ON			
	Reset condition	Real time information			
	Description	LDO2 state			
	0	regulator OFF			
LDO2_ST	1	regulator ON			
	Reset condition	Real time information			
	Description	LDO1 state			
	0	regulator OFF			
LDO1_ST	1	regulator ON			
	Reset condition	Real time information			
	Description	BUCK3 state			
	0	regulator OFF			
BUCK3_ST	1	regulator ON			
	Reset condition	Real time information			
BUCK2_ST	Description	BUCK2 state			

VR5510

	0	regulator OFF		
	1	regulator ON		
	Reset condition	Real time information		
	Description	BUCK1 state		
BUCKA ST	0	regulator OFF		
BUCK1_ST	1	regulator ON		
	Reset condition	Real time information		
	Description	BOOST state		
DOOST ST	0	regulator OFF		
BOOST_ST	1	regulator ON		
	Reset condition	Real time information		
	Description	HVLDO state		
	0	regulator OFF		
HVLDO_ST	1	regulator ON		
	Reset condition	Real time information		
	Description	VPRE state		
	0	regulator OFF		
VPRE_ST	1	regulator ON		
	Reset condition	Real time information		

Table 95. M_FLAG3 register description...continued

25.16 M_VMON_REGx register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	0	0	0	0	VMON4_REG_ASSIGN [2:0]		VMON3_ REG_ASSIGN	
Read	RESERVED	RESERVED	RESERVED	RESERVED	VMON4_REG_ASSIGN [2:0]		VMON3_ REG_ASSIGN	
Reset	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8	
VMON3_REG_	VMON3_REG_ASSIGN [2:0] VMON2_REG_ASSIGN [2:0]				VMON1_REG_ASSIGN [2:0]			
VMON3_REG_	ASSIGN [2:0]	VMON2	2_REG_ASSIG	N [2:0]	VMON	1_REG_ASSIG	N [2:0]	
0	0	0 0		0	0	0	0	

Multi-Output PMIC with SMPS and LDO

able 96. M_VMON_REGX register description							
	Description	Regulator Assignment to VMON1					
	000	External Regulator					
	001	VPRE					
	010	LDO1					
VMON1_REG_	011	LDO2					
ASSIGN [2:0]	100	BUCK3					
	101	BOOST					
	110	LDO3					
	111	BUCK2					
	Reset condition	POR					
	Description	Regulator Assignment to VMON2					
	000	External Regulator					
	001	VPRE					
	010	LDO1					
VMON2_REG_	011	LDO2					
ASSIGN [2:0]	100	BUCK3					
	101	BOOST					
	110	LDO3					
	111	BUCK2					
	Reset condition	POR					
	Description	Regulator Assignment to VMON3					
	000	External Regulator					
	001	VPRE					
	010	LDO1					
VMON3_REG_	011	LDO2					
ASSIGN [2:0]	100	BUCK3					
	101	BOOST					
	110	LDO3					
	111	BUCK2					
	Reset condition	POR					
	Description	Regulator Assignment to VMON4					
	000	External Regulator					
	001	VPRE					
VMON4_REG_ ASSIGN [2:0]	010	LDO1					
	011	LDO2					
	100	BUCK3					
	101	BOOST					
i.	L						

Table 96. M_VMON_REGX register description

VR5510 Product data sheet

110 LDO3 111 BUCK2 Reset condition POR

Table 96. M_VMON_REGX register description...continued

25.17 M_LVB1_SVS register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	0	0	0	0	0	0	0	0
Read	RESERVED							
Reset	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8				
0		0									
RESERVED		LVB1_SVS [6:0]									
0	0	0	0	0	0	0	0				

Table 97. M_LVB1_SVS register description

	Description	Static Voltage Scaling offset (mV)
	0000000	0
	0000001	6.25
	0000010	12.50
	0000011	18.75
	0000100	25
	0000101	31.25
	0000110	37.5
LVB1_SVS [6:0]	0000111	43.75
2401_343 [0.0]	0001000	50
	0001001	56.25
	0001010	62.5
	0001011	68.75
	0001100	75
	0001101	81.25
	0001110	87.5
	0001111	93.75
	0010000	100

VR5510 Product data sheet

register descriptiond	continued
0010001	106.25
0010010	112.5
0010011	118.75
0010100	125
0010101	131.25
0010110	137.5
0010111	143.75
0011000	150
0011001	156.25
0011010	162.5
0011011	168.75
0011100	175
0011101	181.25
0011110	187.5
0011111	193.75
0100000	200
0100001	206.25
0100010	212.5
0100011	218.75
0100100	225
0100101	231.25
0100110	237.5
0100111	243.75
0101000	250
0101001	256.25
0101010	262.5
0101011	268.75
0101100	275
0101101	281.25
0101110	287.5
0101111	293.75
0110000	300
0110001	306.25
0110010	312.5
0110011	318.75
0110100	325
0110101	331.25

Table 97. M_LVB1_SVS register description...continued

VR5510 Product data sheet

Multi-Output PMIC with SMPS and LDO

 regiotor accomption	
0110110	337.5
0110111	343.75
0111000	350
0111001	356.25
0111010	362.5
0111011	368.75
0111100	375
0111101	381.25
0111110	387.5
0111111	393.75
Reset condition	POR

Table 97. M_LVB1_SVS register description...continued

25.18 M_LVB1_STBY_DVS register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	0	0	0	0	0	0	0	0
Read	RESERVED							
Reset	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8				
	BUCK1_STBY [7:0]										
			BUCK1_S	TBY [7:0]							
	OTP										

Table 98. M_LVB1_STBY_DVS register description

	BUCK1 output voltage in	BUCK1 output voltage in standby mode					
BUCK1_ STBY[7:0]	00000000 to 11111111	0.4V to 1.8V					

25.19 M_MEMORY0 register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16			
Write	M_MEMORY0[15:0]										
Read		M_MEMORY0[15:0]									
Reset	0	0	0	0	0	0	0	0			

Multi-Output PMIC with SMPS and LDO

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
	M_MEMORY0 [15:0]						
			M_MEMO	RY0 [15:0]			
0	0	0	0	0	0	0	0

Table 99. M_MEMORY0 register description

M_MEMORY0 [15:0]	Description	Free memory field for data storage	
	0	e hite free memory	
	1	16 bits free memory	
	Reset condition	POR	

25.20 M_MEMORY1 register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write		M_MEMORY1 [15:0]						
Read		M_MEMORY1 [15:0]						
Reset	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
RW							
	M_MEMORY1 [15:0]						
0	0	0	0	0	0	0	0

Table 100. M_MEMORY1 register description

M_MEMORY1 [15:0]	Description	Free memory field for data storage	
	0	2 hits free memory	
	1	16 bits free memory	
	Reset condition	POR	

25.21 M_DEVICEID register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	0		0			0		
Read	RESERVED		FMREV[2:0]		RESERVED	MMREV[2:0]		

Product data sheet

VR5510

Multi-Output PMIC with SMPS and LDO

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Reset (for B1)	0	0	1	0	0	0	0	1

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8	
	()		0				
	FAM_ID[3:0]				DEV_I	D [3:0]		
0	1	1	0	0	0	0	1	

RO: Read Only; RW: Read/Write; W: Write, RWOTP: default value loaded from OTP, FLGWC: clear on write flag

Table 101. M_DEVICEID register description

	Description	Device ID
DEV_ID[3:0]	[3:0]	0001: default value for VR5510
	Reset condition	POR
	Description	Family ID
FAM_ID[3:0]	[3:0]	0110: default value for VR5510
	Reset condition	POR
	Description	Metal Mask Revision
MMREV[2:0]	[2:0]	Metal Mask Revision configured by metal connection
	Reset condition	POR
	Description	Full Mask Revision
FMREV[2:0]	[2:0]	Full Mask Revision configured by metal connection
	Reset condition	POR

26 Fail-Safe Register Mapping

26.1 FS_GRL_FLAGS register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	0	0	0	0	TIMING_ WINDOW_ STBY_FLG	STBY_ WAKE_UP	0	0
Read	FS_COM_G	FS_WD_G	FS_IO_G	FS_REG_ OVUV_G	TIMING_ WINDOW_ STBY_FLG	STBY_ WAKE_UP	FCCU1_RT	FCCU2_RT
Reset	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
0	0	0	0	0	0	0	0
RESERVED							
0	0	0	0	0	0	0	0

Table 102. FS_GRL_FLAGS register description

TADIE TUZ. FS_GRL_FLAGS	register description	1
	Description	Report the real state of the FCCU2 status
ECCU2 DT	0	FCCU2 low
FCCU2_RT	1	FCCU2 high
	Reset condition	Real time information
	Description	Report the real state of the FCCU1 status
FCCU1_RT	0	FCCU1 low
FCCOT_KT	1	FCCU1 high
	Reset condition	Real time information
	Description	Indicate startup from Standby mode
STBY_WAKE_UP	0	Cold wake up
SIDI_WARE_UP	1	Standby wake up
	Reset condition	POR / Clear on Write (write '1')
	Description	Report a bad timing window for standby entry
TIMING_WINDOW_	0	No Error
STBY_FLG	1	Error
	Reset condition	POR / Clear on Write (write '1')
	Description	Report an error in one of the voltage monitor
FS_REG_OVUV_G	0	No Failure
13_REG_0000_0	1	Failure
	Reset condition	POR
	Description	Report an error in one of the Failsafe I/Os (FS_IO_G = PGOOD_DIAG or RSTB_DIAG or FS0B_DIAG)
FS_IO_G	0	No Failure
	1	Failure
	Reset condition	POR
	Description	Report an error on watchdog refresh
	0	Good WD refresh
FS_WD_G	1	Bad WD refresh
	Reset condition	POR
	Description	Report an error on the I2C Communication
FS_COM_G	0	No Failure
	1	Failure
1	1	1

VR5510

Table 102. FS_GRL_FLAGS register descriptioncontinued								
	Reset condition	POR						

26.2 FS_I_OVUV_SAFE_REACTION1 register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	0	0	0	0	VCOREMON_OV_ FS_IMPACT [1:0]		VCOREMON_UV_ FS_IMPACT [1:0]	
Read	RESERVED	RESERVED	RESERVED	RESERVED	VCOREMON_OV_ FS_IMPACT [1:0]		VCOREM FS_IMPA	
Reset	0	0	0	0	1	0	0	1

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
HVLDO_V	MON_OV_		HVLDO_VMON_UV_		VDDIO_OV_		O_UV
FS_IMP#	ACT [1:0]		FS_IMPACT [1:0]		FS_IMPACT [1:0]		ACT [1:0]
HVLDO_V	MON_OV_	HVLDO_VN		VDDIO_OV_		VDDI	O_UV
FS_IMP#	ACT [1:0]	FS_IMPAC		FS_IMPACT [1:0]		_FS_IMP/	ACT [1:0]
1	0	0	1	1	0	0	1

Table 103. FS_I_OVUV_SAFE_REACTION1 register description

	Description	Reaction on RSTB or FS0B output in case of UV detection on VDDIO
	00	No effect on RSTB and FS0B
VDDIO_UV	01	VDDIO UV asserts FS0B only
_FS_IMPACT [1:0]	10	VDDIO UV asserts RSTB and FS0B
	11	VDDIO UV asserts RSTB and FS0B
	Reset condition	POR
	Description	Reaction on RSTB or FS0B output in case of OV detection on VDDIO
	00	No effect on RSTB and FS0B
	01	VDDIO OV asserts FS0B only
FS_IMPACT [1:0]	10	VDDIO OV asserts RSTB and FS0B
	11	VDDIO OV asserts RSTB and FS0B
	Reset condition	POR
	Description	Reaction on RSTB or FS0B output in case of UV detection on HVLDO
HVLDO_VMON_UV_	00	No effect on RSTB and FS0B
FS_IMPACT [1:0]	01	HVLDO UV asserts FS0B only
	10	HVLDO UV asserts RSTB and FS0B

VR5510 Product data sheet

Multi-Output PMIC with SMPS and LDO

	11	HVLDO UV asserts RSTB and FS0B		
	Reset condition	POR		
	Description	Reaction on RSTB or FS0B output in case of OV detection on HVLDO		
	00	No effect on RSTB and FS0B		
HVLDO_VMON_OV_	01	HVLDO OV asserts FS0B only		
FS_IMPACT [1:0]	10	HVLDO OV asserts RSTB and FS0B		
	11	HVLDO OV asserts RSTB and FS0B		
	Reset condition	POR		
	Description	Reaction on RSTB or FS0B output in case of UV detection on VCOREMON		
	00	No effect on RSTB and FS0B		
	01	VCOREMON UV asserts FS0B only		
FS_IMPACT [1:0]	10	VCOREMON UV asserts RSTB and FS0B		
	11	VCOREMON UV asserts RSTB and FS0B		
	Reset condition	POR		
	Description	Reaction on RSTB or FS0B output in case of OV detection on VCOREMON		
	00	No effect on RSTB and FS0B		
VCOREMON_OV_	01	VCOREMON OV asserts FS0B only		
FS_IMPACT [1:0]	10	VCOREMON OV asserts RSTB and FS0B		
	11	VCOREMON OV asserts RSTB and FS0B		
	Reset condition	POR		

Table 103. FS_I_OVUV_SAFE_REACTION1 register description...continued

26.3 FS_I_OVUV_SAFE_REACTION2 register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16	
Write	VMON4_OV_FS_ IMPACT [1:0]		_	VMON4_UV_FS_ IMPACT [1:0]		VMON3_OV_ FS_IMPACT[1:0]		VMON3_UV_FS_ IMPACT [1:0]	
Read	VMON4_OV_FS_ IMPACT [1:0]		VMON4_UV_FS_ IMPACT [1:0]		VMON FS_IMPA		VMON3_ IMPAC		
Reset	1	0	0	1	1	0	0	1	

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
VMON2_ IMPAC		VMON2_UV_FS_ IMPACT [1:0]		VMON1_OV_FS_ IMPACT [1:0]		VMON1_UV_FS_ IMPACT [1:0]	
	VMON2_OV_FS_ VMON2_UV_FS_ IMPACT [1:0] IMPACT [1:0]			VMON1_ IMPAC		VMON1_ IMPAC	_UV_FS_ T [1:0]

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
1	0	0	1	1	0	0	1

Table 104. FS_I_OVUV_SAFE_REACTION2 register description

able 104. F5_I_OVUV_SAF	L_INLACTION2 Tegiste	a description			
	Description	Reaction on RSTB or FS0B output in case of UV detection on VMON1			
	00	No effect on RSTB and FS0B			
VMON1_UV_	01	VMON1 UV asserts FS0B only			
FS_IMPACT [1:0]	10	VMON1 UV asserts RSTB and FS0B			
	11	VMON1 UV asserts RSTB and FS0B			
	Reset condition	POR			
	Description	Reaction on RSTB or FS0B output in case of OV detection on VMON1			
	00	No effect on RSTB and FS0B			
VMON1_OV_	01	VMON1 OV asserts FS0B only			
FS_IMPACT [1:0]	10	VMON1 OV asserts RSTB and FS0B			
	11	VMON1 OV asserts RSTB and FS0B			
	Reset condition	POR			
	Description	Reaction on RSTB or FS0B output in case of UV detection on VMON2			
	00	No effect on RSTB and FS0B			
	01	VMON2 UV asserts FS0B only			
FS_IMPACT [1:0]	10	VMON2 UV asserts RSTB and FS0B			
	11	VMON2 UV asserts RSTB and FS0B			
	Reset condition	POR			
	Description	Reaction on RSTB or FS0B output in case of OV detection on VMON2			
	00	No effect on RSTB and FS0B			
VMON2_OV_ FS_IMPACT [1:0]	01	VMON2 OV asserts FS0B only			
FS_IMPACT [1.0]	10	VMON2 OV asserts RSTB and FS0B			
	11	VMON2 OV asserts RSTB and FS0B			
	Reset condition	POR			
	Description	Reaction on RSTB or FS0B output in case of UV detection on VMON3			
	00	No effect on RSTB and FS0B			
VMON3_UV_ FS_IMPACT [1:0]	01	VMON3 UV asserts FS0B only			
r3_IWFACT[1:0]	10	VMON3 UV asserts RSTB and FS0B			
	11	VMON3 UV asserts RSTB and FS0B			
	Reset condition	POR			

VR5510 Product data sheet

TADIE 104. F3_1_0VUV_SAFE	_REACTION2 regist	
	Description	Reaction on RSTB or FS0B output in case of OV detection on VMON3
	00	No effect on RSTB and FS0B
VMON3_OV_	01	VMON3 OV asserts FS0B only
FS_IMPACT [1:0]	10	VMON3 OV asserts RSTB and FS0B
	11	VMON3 OV asserts RSTB and FS0B
	Reset condition	POR
	Description	Reaction on RSTB or FS0B output in case of UV detection on VMON4
	00	No effect on RSTB and FS0B
VMON4_UV_	01	VMON4 UV asserts FS0B only
FS_IMPACT [1:0]	10	VMON4 UV asserts RSTB and FS0B
	11	VMON4 UV asserts RSTB and FS0B
	Reset condition	POR
	Description	Reaction on RSTB or FS0B output in case of OV detection on VMON4
	00	No effect on RSTB and FS0B
VMON4_OV_	01	VMON4 OV asserts FS0B only
FS_IMPACT [1:0]	10	VMON4 OV asserts RSTB and FS0B
	11	VMON4 OV asserts RSTB and FS0B
	Reset condition	POR

Table 104. FS_I_OVUV_SAFE_REACTION2 register description ... continued

26.4 FS_I_ABIST2_CTRL register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	0	0	0	0	0	0	0	0
Read	RESERVED							
Reset	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
0	VMON4_ ABIST2	VMON3_ ABIST2	VMON2_ ABIST2	VMON1_ ABIST2	HVLDO_ VMON_ ABIST2	VCORE_ ABIST2	VDDIO_ ABIST2
RESERVED	VMON4_ ABIST2	VMON3_ ABIST2	VMON2_ ABIST2	VMON1_ ABIST2	HVLDO_ VMON_ ABIST2	VCORE_ ABIST2	VDDIO_ ABIST2
0	0	0	0	0	0	0	0

Multi-Output PMIC with SMPS and LDO

able 105. FS_I_ABIST2_CTRL register description						
	Description	VDDIO ABIST2 configuration				
VDDIO_ABIST2	0	No ABIST				
	1	Run ABIST on VDDIO after INIT				
	Reset condition	POR				
	Description	VCORE ABIST2 configuration				
VCORE_ABIST2	0	No ABIST				
VCORE_ABIST2	1	Run ABIST on VCOREMON after INIT				
	Reset condition	POR				
	Description	HVLDO ABIST2 configuration				
	0	No ABIST				
HVLDO_VMON_ABIST2	1	Run ABIST on HVLDO after INIT				
	Reset condition	POR				
	Description	VMON1 ABIST2 configuration				
VMON1_ABIST2	0	No ABIST				
VMONT_ABIST2	1	Run ABIST on VMON1 after INIT				
	Reset condition	POR				
	Description	VMON2 ABIST2 configuration				
VMON2_ABIST2	0	No ABIST				
VINON2_ABIS12	1	Run ABIST on VMON2 after INIT				
	Reset condition	POR				
	Description	VMON3 ABIST2 configuration				
	0	No ABIST				
VMON3_ABIST2	1	Run ABIST on VMON3 after INIT				
	Reset condition	POR				
	Description	VMON4 ABIST2 configuration				
	0	No ABIST				
VMON4_ABIST2	1	Run ABIST on VMON4 after INIT				
	Reset condition	POR				

Table 105. FS_I_ABIST2_CTRL register description

26.5 FS_I_WD_CFG register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	WD_ERR_	LIMIT[1:0]	0	WD_RFR_	LIMIT[1:0]	0	WD_FS_IM	PACT[1:0]
Read	ad WD_ERR_LIMIT[1:0]		RESERVED	WD_RFR_	LIMIT[1:0]	RESERVED	WD_FS_IM	PACT[1:0]
Reset	0	1	0	0	0	0	1	0

VR5510 Product data sheet

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
0	W	D_RFR_CNT[2:	:0]		WD_ERR	_CNT[3:0]	
RESERVED	RESERVED WD_RFR_CNT[2:0]				WD_ERR	_CNT[3:0]	
0	0	0	0	0	0	0	0

Table 106. FS_I_WD_CFG register description

WD_ERR_LIMIT[1:0]	Refer to Table 47	
WD_RFR_LIMIT[1:0]	Refer to Table 39	
WD_FS_IMPACT[1:0]	Refer to Table 40	
	Description	Reflect the value of the Watchdog Refresh Counter
	000	0
	001	1
	010	2
WD DED CNT[2:0]	011	3
WD_RFR_CNT[2:0]	100	4
	101	5
	110	6
	111	7
	Reset condition	POR
	Description	Reflect the value of the Watchdog Error Counter
	0000	0
	0001	1
	0010	2
	0011	3
WD_ERR_CNT[3:0]	0100	4
	0101	5
	0110	6
	0111	7
	1000	8
	Reset condition	POR

26.6 FS_I_SAFE_INPUTS register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	FCCU_C	CFG[1:0]	0	FCCU12_ FLT_POL	FCCU1_ FLT_POL	FCCU2_ FLT_POL	0	FCCU12_ FS_ IMPACT

VR5510

127 / 193

Multi-Output PMIC with SMPS and LDO

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Read	FCCU_C	FG[1:0]	RESERVED	FCCU12_ FLT_POL	FCCU1_ FLT_POL	FCCU2_ FLT_POL	RESERVED	FCCU12_ FS_ IMPACT
Reset	0	1	0	0	0	0	0	1

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
FCCU1_ FS_IMPACT	FCCU2_ FS_IMPACT	0	0		TIMING_WIND	OW_STBY[3:0]	
FCCU1_ FS_IMPACT	FCCU2_ FS_IMPACT	RESERVED	RESERVED		TIMING_WIND	OW_STBY[3:0]	
1	1	0	0	1	0	1	0

Table 107. FS_I_SAFE_INPUTS register description

TIMING_WINDOW_STBY[3:0]	Refer to Table 74
FCCU2_FS_IMPACT	Refer to Table 55
FCCU1_FS_IMPACT	Refer to Table 55
FCCU12_FS_IMPACT	Refer to Table 53
FCCU2_FLT_POL	Refer to Table 54
FCCU1_FLT_POL	Refer to Table 54
FCCU12_FLT_POL	Refer to Table 52
FCCU_CFG[1:0]	Refer to Table 51

26.7 FS_I_FSSM register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	FLT_I CNT_LI	_	0	FLT_ERR_I	MPACT[1:0]	0	RSTB_DUR	0
Read	FLT_I CNT_LI		RESERVED	FLT_ERR_I	MPACT[1:0]	RESERVED	RSTB_DUR	RESERVED
Reset	0	1	0	1	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
BACKUP_ SAFETY_ PATH	LPCLK_ MON_DIS	CLK_ MON_DIS	DIS8S		0		
BACKUP_ SAFETY_ PATH	LPCLK_ MON_DIS	CLK_ MON_DIS	DIS8S		FLT_ERR_	_CNT[3:0]	

VR5510

Multi-Output PMIC with SMPS and LDO

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
1	0	0	0	0	0	0	1

Table 108. FS_I_FSSM register description

	Description	RSTB pulse duration configuration					
RSTB_DUR	0	10 ms					
KOTB_DOK	1	1 ms					
	Reset condition	POR					
	Description	Assert RSTB in case of a short to high detected on FS0B					
BACKUP_SAFETY_PATH	0	RSTB is not asserted					
BACKUP_SAFETT_FAIT	1	RSTB is asserted					
	Reset condition	POR					
	Description	Disable Clock Monitoring					
CLK_MON_DIS	0	Clock Monitoring enabled					
CER_MON_DIS	1	Clock Monitoring disabled					
	Reset condition	POR					
	Description	Disable Low Power Clock Monitoring					
LPCLK_MON_DIS	0	Low Power Clock Monitoring enabled					
LFCLK_WON_DIS	1	Low Power Clock Monitoring disabled					
	Reset condition	POR					
	Description	Disable 8S timer					
DIS8S	0	RSTB low 8s counter enabled					
DISOS	1	RSTB low 8s counter disabled					
	Reset condition	POR					
	Description	Reflect the value of the Fault Error Counter					
	0000	0					
	0001	1					
	0010	2					
	0011	3					
	0100	4					
FLT_ERR_CNT[3:0]	0101	5					
	0110	6					
	0111	7					
	1000	8					
	1001	9					
	1010	10					
	1011	11					

Multi-Output PMIC with SMPS and LDO

Table 108. FS_I_FSSM register description...continued

	1100	12
	Reset condition	POR
FLT_ERR_IMPACT[1:0]	Refer to Table 55	
FLT_ERR_CNT_LIMIT[1:0]	Refer to Table 54	

26.8 FS_I_SVS register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write			SVS_ OFFSET_ SIGN	0				
Read			SVS_ OFFSET_ SIGN	RESERVED				
Reset	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
0	0	0	0	0	0	0	0
RESERVED							
0	0	0	0	0	0	0	0

Table 109. FS_I_SVS register description

	Description	Static Voltage Scaling offset (mV)
	0000000	0
	0000001	6.25
	0000010	12.50
	0000011	18.75
	0000100	25
	0000101	31.25
SVS_OFFSET[5:0]	0000110	37.5
	0000111	43.75
	0001000	50
	0001001	56.25
	0001010	62.5
	0001011	68.75
	0001100	75
	0001101	81.25

VR5510 Product data sheet

Table 109. FS_I	SVS register descriptioncom	tinued
	0001110	87.5
	0001111	93.75
	0010000	100
	0010001	106.25
	0010010	112.5
	0010011	118.75
	0010100	125
	0010101	131.25
	0010110	137.5
	0010111	143.75
	0011000	150
	0011001	156.25
	0011010	162.5
	0011011	168.75
	0011100	175
	0011101	181.25
	0011110	187.5
	0011111	193.75
	0100000	200
	0100001	206.25
	0100010	212.5
	0100011	218.75
	0100100	225
	0100101	231.25
	0100110	237.5
	0100111	243.75
	0101000	250
	0101001	256.25
	0101010	262.5
	0101011	268.75
	0101100	275
	0101101	281.25
	0101110	287.5
	0101111	293.75
	0110000	300
	0110001	306.25
	0110010	312.5

Table 109. FS_I_SVS register description...continued

VR5510

	9.010. 0.000. pt. 0	
	0110011	318.75
	0110100	325
	0110101	331.25
	0110110	337.5
	0110111	343.75
	0111000	350
	0111001	356.25
	0111010	362.5
	0111011	368.75
	0111100	375
	0111101	381.25
	0111110	387.5
	0111111	393.75
	Reset condition	POR
	Description	SVS offset negative or positive
OVO OFFORT CLON	0	Negative offset
SVS_OFFSET_SIGN	1	Positive offset
	Reset condition	POR

Table 109. FS_I_SVS register description...continued

26.9 FS_WD_WINDOW register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	WD_WINDOW[3:0]				0	WDW_DC[2:0]		
Read	WD_WINDOW[3:0]				RESERVED	WDW_DC[2:0]		
Reset	0	0	1	1	0	0	1	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
0	0	0	0		WDW_REC	OVERY[3:0]	
RESERVED	RESERVED	RESERVED	RESERVED	WDW_RECOVERY[3:0]			
0	0	0	0	1	0	1	1

Table 110. FS_WD_WINDOW register description

WD_WINDOW[3:0]	Refer to <u>Table 45</u>
WDW_DC[2:0]	Refer to Table 46
WDW_RECOVERY[3:0]	Refer to Table 50

Multi-Output PMIC with SMPS and LDO

26.10 FS_WD_SEED register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	WD_SEED[15:0]							
Read		WD_SEED[15:0]						
Reset	0	1	0	1	1	0	1	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8	
WD_SEED[15:0]								
	WD_SEED[15:0]							
1	0	1	1	1	0	1	0	

Table 111. FS_WD_SEED register description

	Description	Watchdog LFSR value
	0	OvEAP2 default value at startup
WD_SEED [15:0]	1	0x5AB2 default value at startup
	Reset condition	POR

26.11 FS_WD_ANSWER register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16	
Write		WD_ANSWER[15:0]							
Read		WD_ANSWER[15:0]							
Reset	0	0	0	0	0	0	0	0	

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8	
WD_ANSWER[15:0]								
	WD_ANSWER[15:0]							
0	0	0	0	0	0	0	0	

Table 112. FS_WD_ANSWER register description

	Description	Watchdog answer value from the MCU
WD_ANSWER	0	Challenger WD Answer = (NOT(((LFSR x 4)+6)–4))/4 (refer to
[15:0]	1	Simple WD Answer = 0x5AB2 (refer to <u>Section 22.4.1 "Simple watchdog"</u>)

VR5510 Product data sheet

133 / 193

Table 112. FS_WD_ANSWER register descriptioncontinued				
	Reset condition	POR		

26.12 FS_OVUVREG_STATUS register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	VCORE MON_OV	VCORE MON_UV	VDDIO_OV	VDDIO_UV	VMON4_ OV	VMON4_UV	VMON3_ OV	VMON3_UV
Read	VCORE MON_OV	VCORE MON_UV	VDDIO_OV	VDDIO_UV	VMON4_ OV	VMON4_UV	VMON3_ OV	VMON3_UV
Reset	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
VMON2_OV	VMON2_UV	VMON1_OV	VMON1_UV	HVLDO_ VMON_OV	HVLDO_ VMON_UV	FS_ DIGREF_OV	FS_OSC_ DRIFT
VMON2_OV	VMON2_UV	VMON1_OV	VMON1_UV	HVLDO_ VMON_OV	HVLDO_ VMON_UV	FS_ DIGREF_OV	FS_OSC_ DRIFT
0	0	0	0	0	0	0	0

Table 113. FS_OVUVREG_STATUS register description

	Description	Overvoltage Monitoring on VCOREMON		
VCOREMON_OV	0	No Overvoltage		
VCOREMON_OV	1	Overvoltage Reported on VCOREMON		
	Reset condition	POR / Clear on Write (write '1')		
	Description	Undervoltage Monitoring on VCOREMON		
VCOREMON_UV	0	No Undervoltage		
VCOREMON_0V	1	Undervoltage Reported on VCOREMON		
	Reset condition	POR / Clear on Write (write '1')		
	Description	Overvoltage Monitoring on VDDIO		
VDDIO_OV	0	No Overvoltage		
VDDIO_0V	1	Overvoltage Reported on VDDIO		
	Reset condition	POR / Clear on Write (write '1')		
	Description	Undervoltage Monitoring on VDDIO		
VDDIO_UV	0	No Undervoltage		
VDDIO_0V	1	Undervoltage Reported on VDDIO		
	Reset condition	POR / Clear on Write (write '1')		
VMON4_OV	Description	Overvoltage Monitoring on VMON4		
VIIIC/14_0V	0	No Overvoltage		

VR5510 Product data sheet

Multi-Output PMIC with SMPS and LDO

	1	1 Overvoltage Reported on VMON4			
	Reset condition	POR / Clear on Write (write '1')			
	Description	Undervoltage Monitoring on VMON4			
VMON4_UV	0	No Undervoltage			
	1	Undervoltage Reported on VMON4			
	Reset condition	POR / Clear on Write (write '1')			
	Description	Overvoltage Monitoring on VMON3			
VMON3_OV	0	No Overvoltage			
	1	Overvoltage Reported on VMON3			
	Reset condition	POR / Clear on Write (write '1')			
	Description	Undervoltage Monitoring on VMON3			
	0	No Undervoltage			
VMON3_UV	1	Undervoltage Reported on VMON3			
	Reset condition	POR / Clear on Write (write '1')			
	Description	Overvoltage Monitoring on VMON2			
VMON2_OV	0	No Overvoltage			
	1	Overvoltage Reported on VMON2			
	Reset condition	POR / Clear on Write (write '1')			
	Description	Undervoltage Monitoring on VMON2			
VMON2_UV	0	No Undervoltage			
	1	Undervoltage Reported on VMON2			
	Reset condition	POR / Clear on Write (write '1')			
	Description	Overvoltage Monitoring on VMON1			
VMON1_OV	0	No Overvoltage			
	1	Overvoltage Reported on VMON1			
	Reset condition	POR / Clear on Write (write '1')			
	Description	Undervoltage Monitoring on VMON1			
VMON1_UV	0	No Undervoltage			
	1	Undervoltage Reported on VMON1			
	Reset condition	POR / Clear on Write (write '1')			
	Description	Overvoltage Monitoring on HVLDO			
HVLDO_VMON_OV	0	No Overvoltage			
	1	Overvoltage Reported on HVLDO VMON			
	Reset condition	POR / Clear on Write (write '1')			
	Description	Undervoltage Monitoring on HVLDO			
HVLDO_VMON_UV	0	No Undervoltage			
	1	Undervoltage Reported on HVLDO VMON			

Table 113. FS_OVUVREG_STATUS register description...continued

Multi-Output PMIC with SMPS and LDO

	Reset condition	POR / Clear on Write (write '1')		
	Description	Overvoltage of the Internal Digital Fail Safe reference voltage		
	0	No overvoltage		
FS_DIG_REF_OV	1	Overvoltage reported of the internal digital fail safe reference voltage		
	Reset condition	POR / Clear on Write (write '1')		
	Description	Drift of the Fail Safe OSC		
	0	No Drift		
FS_OSC_DRIFT	1	Oscillator Drift		
	Reset condition	POR / Clear on Write (write '1')		

Table 113. FS_OVUVREG_STATUS register description...continued

26.13 FS_RELEASE_FS0B register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write		FS_RELEASE_FS0B[15:0]						
Read		FS_RELEASE_FS0B[15:0]						
Reset	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8	
FS_RELEASE_FS0B[15:0]								
	FS_RELEASE_FS0B[15:0]							
0	0	0	0	0	0	0	0	

Table 114. FS_RELEASE_FS0B register description

RELEASE_ FS0B [15:0]	Description	Secure 16bits word to release FS0B
	0	Depend on WD SEED value and calculation
	1	
	Reset condition	POR

26.14 FS_SAFE_IOS register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	PGOOD_ DIAG	PGOOD_ EVENT	0	EXT_RSTB	0	0	RSTB_ EVENT	RSTB_ DIAG
Read	PGOOD_ DIAG	PGOOD_ EVENT	PGOOD_ SNS	EXT_RSTB	RSTB_DRV	RSTB_SNS	RSTB_ EVENT	RSTB_ DIAG
Reset	0	0	0	0	0	0	0	0

VR5510 Product data sheet

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
RSTB_REQ	0	0	FS0B_DIAG	FS0B_REQ	GO_TO_ INITFS	STBY_REQ	0
Reserved	FS0B_DRV	FS0B_SNS	FS0B_DIAG	Reserved	Reserved	Reserved	RESERVED
0	0	0	0	0	0	0	0

Table 115. FS_SAFE_IOS register description

	Description	Request assertion of FS0B			
	0	No Assertion			
FS0B_REQ	-				
	1	FS0B Assertion			
	Reset condition	POR			
	Description	Report a Failure on FS0B			
FS0B_DIAG	0	No Failure			
	1	Short Circuit High			
	Reset condition	POR / Clear on Write (write '1')			
	Description	Sense of FS0B pad			
FS0B_SNS	0	FS0B pad sensed low			
1000_010	1	FS0B pad sensed high			
	Reset condition	Real time information			
	Description	FS0B driver – digital command			
FS0B_DRV	0	FS0B driver command sensed low			
1300_000	1	FS0B driver command sensed high			
	Reset condition	Real time information			
	Description	Request assertion of RSTB (Pulse)			
	0	No Assertion			
RSTB_REQ	1	RSTB Assertion (Pulse)			
	Reset condition	POR			
	Description	Report an External RESET			
EXT DOTD	0	No External RESET			
EXT_RSTB	1	External RESET			
	Reset condition	POR / Clear on Write (write '1')			
	Description	Report a RSTB Short to High			
	0	No Failure			
RSTB_DIAG	1	Short Circuit High			
	Reset condition	POR / Clear on Write (write '1')			
	Description	Report a RSTB event			
RSTB_EVENT	0	No RESET			
	1	RESET occurred			

Multi-Output PMIC with SMPS and LDO

able 115. FS_SAFE_IOS register descriptioncontinued							
	Reset condition	POR / Clear on Write (write '1')					
	Description	Sense of RSTB pad					
RSTB_SNS	0	RSTB pad sensed low					
Norb_SNS	1	RSTB pad sensed high					
	Reset condition	Real time information					
	Description	RSTB driver – digital command					
RSTB_DRV	0	RSTB driver command sensed low					
KOID_DKV	1	RSTB driver command sensed high					
	Reset condition	Real time information					
	Description	Report a PGOOD Short to High					
PGOOD_DIAG	0	No Failure					
PGOOD_DIAG	1	Short-Circuit HIGH					
	Reset condition	POR / Clear on Write (write '1')					
	Description	Report a Power GOOD event					
PCOOD EVENT	0	No Power GOOD					
PGOOD_EVENT	1	Power Good event occurred					
	Reset condition	POR / Clear on Write (write '1')					
	Description	Sense of PGOOD pad					
PGOOD_SNS	0	PGOOD pad sensed low					
F600D_5N3	1	PGOOD pad sensed high					
	Reset condition	Real time information					
	Description	Standby request from the MCU					
STBY_REQ	0	No Standby request					
SIDI_KEQ	1	Standby request from the MCU					
	Reset condition	0					
	Description	Go back to INIT Fail Safe request					
COTO INITES	0	No action					
GOTO_INITFS	1	Go back to INIT_FS					
	Reset condition	POR					

Table 115. FS_SAFE_IOS register description...continued

26.15 FS_DIAG_SAFETY register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	FCCU12	FCCU1	FCCU2	BAD_ WD_DATA	BAD_WD_ TIMING	0	0	LPCLK_ FREQ2HIGH
Read	FCCU12	FCCU1	FCCU2	BAD_ WD_DATA	BAD_WD_ TIMING	ABIST1_ OK	ABIST2_ OK	LPCLK_ FREQ2HIGH

Multi-Output PMIC with SMPS and LDO

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Reset	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
LPCLK_ FREQ2LOW	I2C_FS_CRC	I2C_FS_REQ	0	0	0	0	0
LPCLK_ FREQ2LOW	I2C_FS_CRC	I2C_FS_REQ	LBIST_ BYPASSED	LBIST_ DONE	LBIST_PASS	RESERVED	RESERVED
0	0	0	0	0	0	0	0

Table 116. FS_DIAG_SAFETY register description

	Description	Report an error in the FCCU12 input
500140	0	No error
FCCU12	1	Error detected
	Reset condition	POR / Clear on Write (write '1')
	Description	Report an error in the FCCU1 input
FCCU1	0	No error
FCCUT	1	Error detected
	Reset condition	POR / Clear on Write (write '1')
	Description	Report an error in the FCCU2 input
FCCU2	0	No error
FCCUZ	1	Error detected
	Reset condition	POR / Clear on Write (write '1')
	Description	WD Refresh status - Data
BAD_WD_DATA	0	Good WD Refresh
BAD_WD_DAIA	1	Bad WD refresh, error in the DATA
	Reset condition	POR / Clear on Write (write '1')
	Description	WD refresh status - Timing
BAD_WD_TIMING	0	Good WD Refresh
BAD_WD_INNING	1	Bad WD refresh, wrong window or in timeout
	Reset condition	POR / Clear on Write (write '1')
	Description	Diagnostic of Analog BIST1
ABIST1_OK	0	ABIST1 FAIL
ADIOT LON	1	ABIST1 PASS
	Reset condition	Real time information
ABIST2_OK	Description	Diagnostic of Analog BIST2
ADIG12_UN	0	ABIST2 FAIL or NOT EXECUTED

	1	ABIST2 PASS		
	Reset condition	Real time information		
	Description	Report an error in the Low Power Clock Frequency		
	0	No error		
LPCLK_FREQ2HIGH	1	Error detected, Frequency too high		
	Reset condition	POR / Clear on Write (write '1')		
	Description	Report an error in the Low Power Clock Frequency		
	0	No error		
LPCLK_FREQ2LOW	1	Error detected, Frequency too low		
	Reset condition	POR / Clear on Write (write '1')		
	Description	Fail Safe I2C communication CRC issue		
	0	No error		
I2C_FS_CRC	1	Error detected in the CRC		
	Reset condition	POR / Clear on Write (write '1')		
	Description	Invalid Fail Safe I2C access (Wrong Write or Read, Write to INIT registers in normal mode, wrong address)		
I2C_FS_REQ	0	No error		
	1	I2C Violation		
	Reset condition	POR / Clear on Write (write '1')		
	Description	Diagnostic of Logical BIST		
	0	LBIST not bypassed		
LBIST_BYPASSED	1	LBIST bypassed		
	Reset condition	Real time information		
	Description	Diagnostic of Logical BIST		
I BIST DONE	0	LBIST did not run		
LBIST_DONE	1	LBIST ran		
	Reset condition	Real time information		
	Description	Diagnostic of Logical BIST		
LBIST_PASS	0	LBIST FAIL or did not run		
	1	LBIST PASS		
	Reset condition	Real time information		

Table 116 ES DIAC SAFETY register de orinti

26.16 FS_INTB_MASK register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	0	0	0	0	0	0	INT_INH_ VMON4_ OV_UV	INT_INH_ VMON3_ OV_UV

VR5510

Multi-Output PMIC with SMPS and LDO

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Read	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	INT_INH_ VMON4_ OV_UV	INT_INH_ VMON3_ OV_UV
Reset	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
INT_INH_ VMON2_ OV_UV	INT_INH_ VMON1_ OV_UV	INT_INH_ VDDIO_ OV_UV	INT_INH_ VCOREMON_ OV_UV	INT_INH_ BAD_WD_ REFRESH	INT_INH_ HVLDO_ VMON_ OV_UV	INT_INH_ FCCU2	INT_INH_ FCCU1
INT_INH_ VMON2_ OV_UV	INT_INH_ VMON1_ OV_UV	INT_INH_ VDDIO_ OV_UV	INT_INH_ VCOREMON_ OV_UV	INT_INH_ BAD_WD_ REFRESH	INT_INH_ HVLDO_ VMON_ OV_UV	INT_INH_ FCCU2	INT_INH_ FCCU1
0	0	0	0	0	0	0	0

Table 117. FS_INTB_MASK register description

	Description	Inhibit INTERRUPT on FCCU1 event			
	0	Interruption NOT MASKED			
INT_INH_FCCU1	1	Interruption MASKED			
	Reset condition	Interruption NOT MASKEDInterruption MASKEDInterruption MASKEDInditionPORInterruption NOT MASKEDInterruption NOT MASKEDInterruption MASKEDInterruption MASKEDInterruption MASKEDInterruption NOT MASKEDInterruption NOT MASKEDInterruption NOT MASKEDInterruption NOT MASKEDInterruption NOT MASKEDInterruption NOT MASKEDInterruption MASKEDInterruption MASKEDInterruption MASKEDInterruption NOT MASKEDInterruption MASKEDInterruption MASKEDInterruption MASKEDInterruption MASKEDInterruption MASKEDInterruption NOT MASKEDInterruption MASKEDInterrupt			
	Description	Inhibit INTERRUPT on FCCU2 event			
	0	Interruption NOT MASKED			
INT_INH_FCCU2	1	Interruption MASKED			
	Reset condition	POR			
	Description	Inhibit INTERRUPT on HVLDO VMON OV and UV event			
INT_INH_HVLDO_VMON_OV_UV	0	Interruption NOT MASKED			
	1	Interruption MASKED			
	1 Interruption MASKED Reset condition POR				
	Description	Inhibit INTERRUPT on bad WD refresh event			
INT_INH_BAD_WD_REFRESH	0	Interruption NOT MASKED			
INT_IND_DAD_WD_REFRESH	1	Interruption MASKED			
	Reset condition	POR			
	Description	Inhibit INTERRUPT on VCOREMON OV and UV event			
INT INH VCOREMON OV UV	0	Interruption NOT MASKED			
	1	Interruption MASKED			
	Reset condition	POR			
INT_INH_VDDIO_OV_UV	Description	Inhibit INTERRUPT on VDDIO OV and UV event			

Multi-Output PMIC with SMPS and LDO

0 Interruption NOT MASKED 1 Interruption MASKED Reset condition POR Interruption NOT MASKED 0 Inhibit INTERRUPT on VMON1 OV and UV event 0 0 Interruption NOT MASKED 1 Interruption NOT MASKED Reset condition POR	
Reset condition POR Inhibit INTERRUPT on VMON1 OV and UV event 0 Interruption NOT MASKED 1	
INT_INH_VMON1_OV_UV Description Inhibit INTERRUPT on VMON1 OV and UV event 0 Interruption NOT MASKED 1 Interruption MASKED	
INT_INH_VMON1_OV_UV 0 Interruption NOT MASKED 1 Interruption MASKED	
INT_INH_VMON1_OV_UV 1 Interruption MASKED	
1 Interruption MASKED	
Reset condition POR	
Description Inhibit INTERRUPT on VMON2 OV and UV event	
0 Interruption NOT MASKED	
INT_INH_VMON2_OV_UV 1 Interruption MASKED	
Reset condition POR	
Description Inhibit INTERRUPT on VMON3 OV and UV event	
0 Interruption NOT MASKED	
INT_INH_VMON3_OV_UV 1 Interruption MASKED	
Reset condition POR	
Description Inhibit INTERRUPT on VMON4 OV and UV event	
0 Interruption NOT MASKED	
INT_INH_VMON4_OV_UV 1 Interruption MASKED	
Reset condition POR	

Table 117. FS_INTB_MASK register description...continued

26.17 FS_STATES register

Return to Register Map

Bits	BIT23	BIT22	BIT21	BIT20	BIT19	BIT18	BIT17	BIT16
Write	0	DBG_EXIT	0	0	OTP_ CORRUPT	0	REG_ CORRUPT	0
Read	RESERVED	Reserved	DBG_ MODE	RESERVED	OTP_ CORRUPT	RESERVED	REG_ CORRUPT	RESERVED
Reset	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8	
0	0	0	0					
RESERVED	RESERVED	RESERVED	FSM_STATES[4:0]					
0	0	0	0	0	0	0	0	

VR5510 Product data sheet

Multi-Output PMIC with SMPS and LDO

	Description	Leave DEBUG mode
	-	
DBG_EXIT	0	No action
	1	Leave DEBUG mode
	Reset condition	POR
	Description	DEBUG mode status
DBG_MODE	0	NOT in DEBUG mode
	1	In DEBUG mode
	Reset condition	Real time information
	Description	OTP bits corruption detection (5ms cyclic check)
OTP_CORRUPT	0	No error
	1	OTP CRC error detected
	Reset condition	POR / Clear on Write (write '1')
	Description	INIT register corruption detection (real time comparison)
	0	No error
REG_CORRUPT	1	INIT register content error detected (mismatch between FS_I_Register / FS_I_NOT_Register)
	Reset condition	POR / Clear on Write (write '1')
	Description	Report Fail-safe state machine current state
	00110	INIT_FS
	00111	WAIT_ABIST2
FSM_STATE[4:0]	01000	ABIST2
	01001	ASSERT_FS0B
	01001 01010	ASSERT_FS0B NORMAL_FS

Table 118. FS_STATES register description

27 OTP Bits Configuration

27.1 Main OTP map overview

 Table 119.
 Main OTP map overview

Addr.	Register Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	
18	CFG_ VPRE_ 1_OTP	0	0	VPREV_OTP[5:0]						
19	CFG_ VPRE_ 2_OTP	VPREDIS_ OTP	VPREV_ STBY_ EN_OTP	VPRESC_OTP[5:0]						
1A	CFG_ VPRE_ 3_OTP	VPREILIM_OTP[1:0]		VPRETOFF	OTP[1:0]	VPRESRLS	_OTP[1:0]	VPRES OTP[_	

VR5510

Multi-Output PMIC with SMPS and LDO

		FP map overvi								
Addr.	Register Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	
1B	CFG_ BOOST_ 1_OTP	0	PSYNC_ PGOOD_ EXT_OTP	EXT_ STBY_ DISCH_ OTP	VBOS_ VBOOST_ OTP		VBSTV_OTP[3:0]			
1C	CFG_ BOOST_ 2_OTP	BOOSTEN_ OTP	VBSTTONTIN	1E_OTP[1:0]		VBS ⁻	TSC_OTP[4	l:0]		
1D	CFG_ BOOST_ 3_OTP	VBSTRCOM	DMP_OTP[1:0] VBSTCCOMP_ VBSTILIM_OTP[1:0] VBSTSF OTP[1:0]						_OTP[1:0]	
1E	CFG_ BUCK1_ 1_OTP			B	UCK1V_OTI	P[7:0]		1		
1F	CFG_ BUCK1_ 2_OTP	PSYNC_ PWRDWN_ EN_OTP	PWRON2_ GATE_ EN_OTP	STBY_ PGOOD_ DLY_OTP		.SELECT_ ?[1:0]		1_ILIM_ P[1:0]	VB12MUL TIPH_ OTP	
20	CFG_ BUCK2_ 1_OTP			BUCK2V_OTP[7:0]						
21	CFG_ BUCK2_ 2_OTP	AMUX_ FOUT		CK2_LSELECT_BUCK2EN_BUCK2_ILIM_BUCK3_OTP[1:0]OTPOTP[1:0]RC_OTF					BUCK3_ GM_OTP	
22	CFG_ BUCK3_ 1_OTP	BUCK3EN_ OTP	N_ BUCK3_LSELECT_ BUCK3V_OTP[4:0] OTP[1:0]							
23	CFG_ BUCK3_ 2_OTP	BUCK	2_COMP_OTP	[2:0]	BUCK1_COMP_OTP[2:0] BUCK3 OTP					
24	CFG_ LDO_ ALL1_OTP		LDO3V_O	TP[3:0]		HVLDOEN_ OTP	LDO3EN_ OTP	LDO2EN_ OTP	LDO1EN_ OTP	
25	CFG_ LDO_ ALL2_OTP		LDO2V_O	LDO1ILIM_ OTP	LD	01V_0TP[2	2:0]			
26	CFG_ SEQ_ 1_OTP	LDO3_ LS_OTP	LDO2_ LS_OTP	BUCK3S_OTP[2:0] BUCK2S_OT				CK2S_OTP[2:0]	
27	CFG_ SEQ_ 2_OTP	HVLDOV	_OTP[1:0]	BU	CK1S_OTP[2:0]	LDO3S_OTP[2:0]		2:0]	
28	CFG_ SEQ_ 3_OTP	SLOT_WIDT	TH_OTP[1:0]	LDO2S_OTP[2:0] LDO1S_OTP[2:0				2:0]		
29	CFG_ SEQ_ 4_OTP	HVLDO_ TRANS_ MODE_OTP	HVLDO_ SLOT_ EN_OTP	HV	LDOS_OTP[2:0]	BO	OSTS_OTP	[2:0]	

Table 119. Main OTP map overview...continued

Multi-Output PMIC with SMPS and LDO

Addr.	Register Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
2A	CFG_ CLOCK_ 1_OTP	VPRE_PFM_	TON_OTP[1:0]	VPRE_PH_OTP[2:0] CLK_DIV2_OTP[2			[2:0]		
2B	CFG_ CLOCK_ 2_OTP	VPRE_ AUTO_ ON_OTP	VPRE_ SSRAMP_ OTP	BUC	K1_PH_OTF	P[2:0]	VBS	T_PH_OTP	[2:0]
2C	CFG_ CLOCK_ 3_OTP	DSM_ EN_OTP	AUTORETRY_ TIMEOUT_ OTP	BUC	K3_PH_OTF	P[2:0]	BUC	K2_PH_OTF	P[2:0]
2D	CFG_ CLOCK_ 4_OTP	BUCK3_ CLK_ SEL_OTP	BUCK2_ CLK_ SEL_OTP	BUCK1_ CLK_ SEL_OTP	VBST_ CLK_ SEL_OTP	VPRE_ CLK_ SEL_OTP	PLL_ SEL_ OTP	SEL_	
2E	CFG_SM_ 1_OTP	BOOST_ TSDCFG_ OTP	BUCK1_ TSDCFG_ OTP	BUCK2_ TSDCFG_ OTP	BUCK3_ TSDCFG_ OTP	LDO1_ TSDCFG_ OTP	LDO2_ TSDCFG_ OTP	LDO3_ TSDCFG_ OTP	HVLDO_ TSDCFG_ OTP
2F	CFG_SM_ 2_OTP	DIE_CEN	ITER_TEMP_O	TP[2:0]	VPRE_ OFF_ DLY_OTP	AUTO RETRY _INFINITE _OTP	AUTO RETRY _EN_OTP	PSYNC_ CFG_OTP	PSYNC_ EN_OTP
30	CFG_ I2C_OTP	VDDIO_R	EG_ASSIGN_C)TP[2:0]		I2CDEVADDI	R_OTP[3:0]		VSUPCFG _OTP
31	CFG_ DEVID_ OTP	STBY_ PGOOD_ EN_OTP	STBY_ POLARITY_ OTP	STBY_ DISCH_ OTP	STBY_ TIMER_ EN_OTP		DEVICEID	_OTP[3:0]	
32	CFG_ SSRAMP_ OTP	VPRESHRH_MSB_OTP[1:0] VPRE_TON_ MIN_OTP[1:0] OTP[1							

Table 119. Main OTP map overview...continued

27.2 Main OTP map description

Table 120.	Main	OTP	map	description
------------	------	-----	-----	-------------

Address	Register	Bit	Symbol	Value	Description
18	CFG_VPRE_	5 to 0	VPREV_OTP[5:0]		VPRE output voltage
	1_OTP			001111	3.3 V
				010000	3.4 V
				010001	3.5 V
				010011	3.7 V
				010110	4 V
				011011	4.5 V
				100000	5 V
				100001	5.1 V
				100010	5.2 V

Multi-Output PMIC with SMPS and LDO

Table 120.	Main OTP map des	cription.			
Address	Register	Bit	Symbol	Value	Description
19	CFG_VPRE_ 2_OTP	7	VPREDIS_OTP		Disable VPRE when 2 VR5510 are used
				0	VPRE enable
				1	VPRE disable
		6	VPREV_STBY_EN_OTP		Enable 3 V for VPRE in standby mode
				0	Disabled
				1	Enabled
		5 to 0	VPRESC_OTP[5:0]		VPRE slope compensation
				000100	41.4 mV/μs (default value for 3.3 V/455 kHz)
				0010000	82.5 mV/μs (default value for 5 V/455 kHz)
				001101	134.3 mV/µs (default value for 3.3 V/2.2 MHz)
				100000	504 mV/µs (default value for 5 V/2.2 MHz)
1A	CFG_VPRE_	7 to 6	to 6 VPREILIM_OTP[1:0]		VPRE current limitation threshold
	3_01P	3_OTP		00	50 mV
			01	80 mV	
				10	120 mV
				11	150 mV
		5 to 4	5 to 4 VPRETOFF_OTP[1:0]		VPRE minimum OFF time
				00	80 ns
				01	Reserved
				10	Reserved
				11	Reserved
		3 to 2	VPRESRLS_OTP[1:0]		VPRE Low Side slew rate control
				00	PU/PD/130 mA
				01	PU/PD/260 mA
				10	PU/PD/520 mA
				11	PU/PD/900 mA (default value)
		1 to 0	VPRESRHS_OTP[1:0]		VPRE High Side pull down slew rate control
				10	PD/520 mA (455 kHz default value)
				11	PD/900 mA (2.2 MHz default value)
1B	CFG_BOOST_	6	PSYNC_PGOOD_EXT_OTP	0	Disabled
	1_OTP			1	Enabled
		5	EXT_STBY_DISCH_OTP	0	Disabled

Table 120. Main OTP map description...continued

© NXP B.V. 2021. All rights reserved.

Multi-Output PMIC with SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
				1	Enabled, setting based on STBY_DISCH_OTP
		4	VBOS_VBOOST_OTP		Enable BOS to VBOOST path
				0	Enabled
				1	Disabled (when BOOST not populated)
		3 to 0	VBSTV_OTP[3:0]		BOOST output voltage
				0000	4.5 V
				0110	5 V
				0111	5.09 V
				1000	5.19 V
				1010	5.4 V
				1101	5.74 V
				1111	6 V
1C	CFG_BOOST_	7	BOOSTEN_OTP		Enable/Disable BOOST regulator
	2_OTP			0	Disabled
				1	Enabled
		6 to 5	VBSTTONTIME_OTP[1:0]		BOOST minimum ON time
				00	60 ns (default value)
				01	50 ns
				10	70 ns
				11	80 ns
		4 to 0	VBSTSC_OTP[4:0]		BOOST slope compensation
				00110	160 mV/µs
				01100	125 mV/µs
				01110	79 mV/µs
				01111	67 mV/µs (default value)
1D	CFG_BOOST_ 3_OTP	7 to 6	VBSTRCOMP_OTP[1:0]		BOOST compensation network resistor Rcomp
				00	750 kΩ
				01	500 kΩ
				10	1000 kΩ
				11	250 kΩ (default)
		5 to 4	VBSTCCOMP_OTP[1:0]		BOOST compensation network resistor Ccomp
				00	125 pF (default)
				01	75 pF
				10	175 pF

Table 120. Main OTP map description...continued

All information provided in this document is subject to legal disclaimers.

VR5510

© NXP B.V. 2021. All rights reserved.

Multi-Output PMIC with SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
				11	125 pF
		3 to 2	VBSTILIM_OTP[1:0]		BOOST inductor peak current limit
				01	1.5 A
				10	2.25 A
		1 to 0	VBSTSR_OTP[1:0]		BOOST Low Side slew rate
				01	Reserved
				10	Reserved
				11	500 V/µs (default value)
1E	CFG_BUCK1_	7 to 0	BUCK1V_OTP[7:0]		BUCK1 output voltage
	1_OTP			0000000	0.4 V
				0100000	…to (6.25 mV step) 0.8 V
				10110000	1.5 V
				10110001	1.8 V
1F	CFG_BUCK1_	7	PSYNC_PWRDWN_EN_OTP		Use PSYNC pin to power down
	2_OTP			0	Disabled
				1	Enabled
		6	PWRON2_GATE_EN_OTP		Use PWRON2 for power up and down
				0	PWRON2 not used for power up/down
				1	PWRON2 used for power up/down
		5 S	STBY_PGOOD_DLY_OTP		Delay to release the STBY_PGOOD pin
				0	400 µs for HVLDO = 3.3 V
				1	300 µs for HVLDO = 0.8 V
		4 to 3	BUCK1_LSELECT_OTP[1:0]		BUCK1 inductor selection
				00	1 µH
				01	Reserved
				10	Reserved
		2 to 1	BUCK1_ILIM_OTP[1:0]		BUCK1 current limitation
				10	2.4 A
				11	3.6 A
		0	VB12MULTIPH_OTP		BUCK1/2 Multiphase operation
				0	Disabled
				1	Enabled
20	CFG_BUCK2_	7 to 0	BUCK2V_OTP[7:0]		BUCK2 output voltage
	1_OTP			0000000	0.4 V
				0100000	…to (6.25 mV step) 0.8 V
				10110000	1.5 V
R5510	1	1	All information provided in this document is subject to	legal disclaimers.	© NXP B.V. 2021. All rights reserv

Table 120. Main OTP map description...continued

Multi-Output PMIC with SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
				10110001	1.8 V
21	CFG_BUCK2_	7	AMUX_FOUT		Select AMUX or FOUT
	2_OTP			0	AMUX
				1	FOUT
		6 to 5	BUCK2_LSELECT_OTP[1:0]		BUCK2 inductor selection
				00	1 µH
			01	Reserved	
				10	Reserved
		4	BUCK2EN_OTP		BUCK2 Enable
				0	Disabled
				1	Enabled
		3 to 2	BUCK2_ILIM_OTP[1:0]		BUCK2 current limitation
				10	2.4 A
				11	3.6 A
		1	1 BUCK3_RC_OTP		BUCK3 internal feedback loop resistor
				0	56 kΩ (default value)
				1	106 kΩ
		0	0 BUCK3_GM_OTP		BUCK3 gain margin
				0	65 GM (default value)
				1	32.5 GM
22	CFG_BUCK3_	7	BUCK3EN_OTP		BUCK3 Enable
	1_OTP			0	Disabled
				1	Enabled
		6 to 5	BUCK3_LSELECT_OTP[1:0]		BUCK3 inductor selection
				00	1 µH
				01	Reserved
				10	Reserved
		4 to 0	BUCK3V_OTP[4:0]		BUCK3 output voltage
				00000	1 V
				00001	1.1 V
				00010	1.2 V
				00011	1.25 V
				00100	1.3 V
				00101	1.35 V
				00110	1.5 V
				00111	1.6 V

Table 120. Main OTP map description...continued

All information provided in this document is subject to legal disclaimers.

Multi-Output PMIC with SMPS and LDO

ddress	Register	Bit	Symbol	Value	Description
				01000	1.8 V
				01001	1.85 V
				01010	2 V
				01011	2.10 V
				01100	2.15 V
				01101	2.25 V
				01110	2.3 V
				01111	2.4 V
				10000	2.5 V
				10001	2.8 V
				10010	3.15 V
				10011	3.20 V
				10100	3.3 V
				10110	3.35 V
				10111	3.4 V
				11000	3.5 V
				11001	3.8 V
				11010	4 V
				11011	4.1 V
23	CFG_BUCK3_	7 to 5	BUCK2_COMP_OTP[2:0]		BUCK2 Compensation Network
	2_OTP			001	16.25 GM
				010	32.5 GM
				011	48.75 GM
				100	65 GM (default value)
				101	81.25 GM
				110	97.5 GM
				111	113.75 GM
		4 to 2	BUCK1_COMP_OTP[2:0]		BUCK1 Compensation Network
				001	16.25 GM
				010	32.5 GM
				011	48.75 GM
				100	65 GM (default value)
				101	81.25 GM
				110	97.5 GM
				111	113.75 GM
		1 to 0	BUCK3_ILIM_OTP[1:0]		BUCK3 current limitation

Table 120. Main OTP map description...continued

© NXP B.V. 2021. All rights reserved.

Multi-Output PMIC with SMPS and LDO

ddress	Register	Bit	Symbol	Value	Description
				10	2.4 A
				11	3.6 A
24	CFG_LDO_	7 to 4	LDO3V_OTP[3:0]		LDO3 output voltage
	ALL1_OTP			0000	1.5 V
				0001	1.6 V
				0010	1.8 V
				0011	1.85 V
				0100	2.15 V
				0101	2.5 V
				0110	2.8 V
				0111	3 V
				1000	3.1 V
				1001	3.15 V
				1010	3.2 V
				1011	3.3 V
				1100	3.35 V
				1101	4 V
				1110	4.9 V
				1111	5 V
		3	HVLDOEN_OTP		HVLDO Enable
				0	Disabled
				1	Enabled
		2	LDO3EN_OTP		LDO3 Enable
				0	Disabled
				1	Enabled
		1	LDO2EN_OTP		LDO2 Enable
				0	Disabled
				1	Enabled
		0	LDO1EN_OTP		LDO1 Enable
				0	Disabled
				1	Enabled
25	CFG_LDO_	7 to 4	LDO2V_OTP[3:0]		LDO2 output voltage
	ALL2_OTP			0000	1.5 V
				0001	1.6 V
				0010	1.8 V
				0011	1.85 V

Table 120. Main OTP map description...continued

VR5510 Product data sheet

Multi-Output PMIC with SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
				0100	2.15 V
				0101	2.5 V
				0110	2.8 V
				0111	3 V
				1000	3.1 V
				1001	3.15 V
				1010	3.2 V
				1011	3.3 V
				1100	3.35 V
				1101	4 V
				1110	4.9 V
				1111	5 V
		3	LDO1ILIM_OTP		LDO1 current limitation
				0	400 mA
				1	150 mA
		2 to 0	LDO1V_OTP[2:0]		LDO1 output voltage
				000	1.1 V
				001	1.2 V
				010	1.6 V
				011	1.8 V
				100	2.5 V
				110	3.3 V
				111	5 V
26	CFG_SEQ_1_OTP	7	LDO3_LS_OTP		Enable load switch mode for LDO3
				0	LDO mode
				1	Switch mode
		6	LDO2_LS_OTP		Enable load switch mode for LDO2
				0	LDO mode
				1	Switch mode
		5 to 3	BUCK3S_OTP[2:0]		BUCK3 sequencing slot
				000	Regulator start and stop in slot 0
				001	Regulator start and stop in slot 1
				010	Regulator start and stop in slot 2
				011	Regulator start and stop in slot 3
				100	Regulator start and stop in slot 4
				101	Regulator start and stop in slot 5

Table 120. Main OTP map description...continued

All information provided in this document is subject to legal disclaimers.

Multi-Output PMIC with SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
				110	Regulator start and stop in slot 6
				111	Regulator does not start (enable via I ² C)
		2 to 0	BUCK2S_OTP[2:0]		BUCK2 sequencing slot
			000	Regulator start and stop in slot 0	
				001	Regulator start and stop in slot 1
				010	Regulator start and stop in slot 2
				011	Regulator start and stop in slot 3
				100	Regulator start and stop in slot 4
				101	Regulator start and stop in slot 5
				110	Regulator start and stop in slot 6
				111	Regulator does not start (enable via I2C)
27	CFG_SEQ_2_OTP	7 to 6	HVLDOV_OTP[1:0]		HVLDO output voltage
				00	0.8 V
				10	3.3 V
		5 to 3	BUCK1S_OTP[2:0]		BUCK1 sequencing slot
				000	Regulator start and stop in slot 0
				001	Regulator start and stop in slot 1
				010	Regulator start and stop in slot 2
				011	Regulator start and stop in slot 3
				100	Regulator start and stop in slot 4
			101	Regulator start and stop in slot 5	
				110	Regulator start and stop in slot 6
				111	Regulator does not start (enable via I ² C)
		2 to 0	LDO3S_OTP[2:0]		LDO3 sequencing slot
				000	Regulator start and stop in slot 0
				001	Regulator start and stop in slot 1
				010	Regulator start and stop in slot 2
				011	Regulator start and stop in slot 3
				100	Regulator start and stop in slot 4
				101	Regulator start and stop in slot 5
				110	Regulator start and stop in slot 6
				111	Regulator does not start (enable via I2C)
28	CFG_SEQ_3_OTP	7 to 6	SLOT_WIDTH_OTP[1:0]		Timing between slots
				00	250 µs

Table 120. Main OTP map description...continued

Multi-Output PMIC with SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
				01	500 μs
				10	1 ms
				11	2 ms
		5 to 3	LDO2S_OTP[2:0]		LDO2 sequencing slot
				000	Regulator start and stop in slot 0
				001	Regulator start and stop in slot 1
				010	Regulator start and stop in slot 2
				011	Regulator start and stop in slot 3
				100	Regulator start and stop in slot 4
				101	Regulator start and stop in slot 5
				110	Regulator start and stop in slot 6
				111	Regulator does not start (enable via I ² C)
		2 to 0	LDO1S_OTP[2:0]		LDO2 sequencing slot
				000	Regulator start and stop in slot 0
				001	Regulator start and stop in slot 1
				010	Regulator start and stop in slot 2
				011	Regulator start and stop in slot 3
				100	Regulator start and stop in slot 4
				101	Regulator start and stop in slot 5
				110	Regulator start and stop in slot 6
				111	Regulator does not start (enable via I ² C)
29	CFG_SEQ_4_OTP	7	HVLDO_TRANS_ MODE_OTP		HVLDO mode during normal/STBY mode
				0	HVLDO always in LDO mode
				1	HVLDO in switch mode in normal mode, LDO mode in standby mode
		6	HVLDO_SLOT_EN_OTP		HVLDO starting sequence
				0	First supply to start
				1	Assigned to a slot
		5 to 3	HVLDOS_OTP[2:0]		HVLDO sequencing slot
				000	Regulator start and stop in slot 0
			001	Regulator start and stop in slot 1	
				010	Regulator start and stop in slot 2
				011	Regulator start and stop in slot 3
				100	Regulator start and stop in slot 4
			101	Regulator start and stop in slot 5	

Table 120. Main OTP map description...continued

Multi-Output PMIC with SMPS and LDO

ddress	Register	Bit	Symbol	Value	Description
				110	Regulator start and stop in slot 6
			_	111	Regulator does not start (enable via I ² C)
		2 to 0	BOOSTS_OTP[2:0]		BOOST sequencing slot
			-	000	Regulator start and stop in slot 0
			-	001	Regulator start and stop in slot 1
			-	010	Regulator start and stop in slot 2
				011	Regulator start and stop in slot 3
			-	100	Regulator start and stop in slot 4
			-	101	Regulator start and stop in slot 5
			-	110	Regulator start and stop in slot 6
				111	Regulator does not start (enable via I ² C)
2A CFG_CLOCK_ 1_OTP	7 to 6	VPRE_PFM_TON_OTP[1:0]		Typical VPRE minimum ON time in PFM	
			00	Reserved	
			-	01	Reserved
			-	10	300 ns
				11	550 ns (default value)
		5 to 3 VPRE_PH_OTP[2:0]	VPRE_PH_OTP[2:0]		VPRE phase selection
			000	No delay	
				001	delay 1
			-	010	delay 2
				011	delay 3
				100	delay 4
				101	delay 5
			-	110	delay 6
			_	111	delay 7
		2 to 0	CLK_DIV2_OTP[2:0]		Selection of CLK2 frequency
				000	Reserved
				001	Reserved
				100	455 kHz
2B	CFG_CLOCK_	7	VPRE_AUTO_ON_OTP		VPRE automatic startup
	2_OTP			0	Disabled, startup based on state machine
				1	Enabled (auto)
		6	VPRE_SSRAMP_OTP		VPRE Internal Reference soft start ramp

Table 120. Main OTP map description...continued

Product data sheet

Multi-Output PMIC with SMPS and LDO

Address	Main OTP map des Register	Bit	Symbol	Value	Description
			-	0	1 mV/µs (VPRE will ramp up in 1 ms for 3.3 V setting)
				1	2 mV/µs (VPRE will ramp up in 500 µs for 3.3 V setting)
		5 to 3	BUCK1_PH_OTP[2:0]		BUCK1 phase selection
				000	No delay
				001	delay 1
				010	delay 2
				011	delay 3
				100	delay 4
				101	delay 5
				110	delay 6
				111	delay 7
		2 to 0	VBST_PH_OTP[2:0]		BOOST phase selection
				000	No delay
				001	delay 1
				010	delay 2
				011	delay 3
				100	delay 4
				101	delay 5
				110	delay 6
				111	delay 7
2C	CFG_CLOCK_	7	DSM_EN_OTP		Deep Sleep Mode enable
	3_OTP			0	Disabled
				1	Enabled
		6	AUTORETRY_		Time between each autoretry
			TIMEOUT_OTP	0	4 s
				1	100 ms
		5 to 3	BUCK3_PH_OTP[2:0]		BUCK3 phase selection
				000	No delay
				001	delay 1
				010	delay 2
				011	delay 3
				100	delay 4
				101	delay 5

Table 120. Main OTP map description...continued

All information provided in this document is subject to legal disclaimers.

Multi-Output PMIC with SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
				110	delay 6
				111	delay 7
		2 to 0	BUCK2_PH_OTP[2:0]		BUCK2 phase selection
				000	No delay
				001	delay 1
				010	delay 2
				011	delay 3
				100	delay 4
				101	delay 5
				110	delay 6
				111	delay 7
2D	CFG_CLOCK_	7	BUCK3_CLK_SEL_OTP		BUCK1 clock selection
	4_OTP			0	CLK_DIV1
				1	Reserved
		6	BUCK2_CLK_SEL_OTP		BUCK2 clock selection
				0	CLK_DIV1
				1	Reserved
		5	BUCK1_CLK_SEL_OTP		BUCK1 clock selection
			0	CLK_DIV1	
				1	Reserved
		4	VBST_CLK_SEL_OTP		VBST clock selection
				0	CLK_DIV1
				1	Reserved
		3	VPRE_CLK_SEL_OTP		VPRE clock selection
				0	CLK_DIV1
				1	CLK_DIV2
		2	PLL_SEL_OTP		PLL enable
				0	Disabled
				1	Enabled
		1 to 0	CLK_DIV1_OTP[1:0]		Selection of CLK1 frequency
				10	2.22 MHz
				01	Reserved
2E	CFG_SM_1_OTP	7	BOOST_TSDCFG_OTP		Boost behavior in case of TSD
				0	Shutdown
				1	Shutdown + Deep Fail Safe
		6	BUCK1_TSDCFG_OTP		BUCK1 behavior in case of TSD

Table 120. Main OTP map description...continued

© NXP B.V. 2021. All rights reserved.

Multi-Output PMIC with SMPS and LDO

ddress	Register	Bit	Symbol	Value	Description
				0	Shutdown
				1	Shutdown + Deep Fail Safe
		5	BUCK2_TSDCFG_OTP		BUCK2 behavior in case of TSD
				0	Shutdown
				1	Shutdown + Deep Fail Safe
		4	BUCK3_TSDCFG_OTP		BUCK3 behavior in case of TSD
				0	Shutdown
				1	Shutdown + Deep Fail Safe
		3 LDO1_TSDCFG_OTP		LDO1 behavior in case of TSD	
				0	Shutdown
				1	Shutdown + Deep Fail Safe
		2	LDO2_TSDCFG_OTP		LDO2 behavior in case of TSD
			_	0	Shutdown
				1	Shutdown + Deep Fail Safe
		1	LDO3_TSDCFG_OTP		LDO3 behavior in case of TSD
				0	Shutdown
				1	Shutdown + Deep Fail Safe
		0	HVLDO_TSDCFG_OTP		HVLDO behavior in case of TSD
				0	Shutdown
				1	Shutdown + Deep Fail Safe
2F	CFG_SM_2_OTP	7 to 5	7 to 5 DIE_CENTER_		Die center temperature warning
			TEMP_OTP[2:0]	000	75 °C
				001	95 °C
				010	105 °C
				011	120 °C
				100	135 °C
				101	150 °C
		4	VPRE_OFF_DLY_OTP		Delay to turn OFF VPRE at power down
				0	SLOT_WIDTH_OTP[1:0]
				1	32 ms
		3	AUTORETRY_		Numbers of auto retry sequence
			INFINITE_OTP	0	15 times
	2			1	Endless
		2	AUTORETRY_EN_OTP		Auto retry enable
				0	Disabled
			1	Enabled	

Table 120. Main OTP map description...continued

Multi-Output PMIC with SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
		1	PSYNC_CFG_OTP		Synchronization
				0	2 x VR5510
				1	1 x VR5510 + 1 x External PMIC
		0	PSYNC_EN_OTP		Enable PSYNC function
				0	Disabled
				1	Enabled
30	CFG_I2C_OTP	7 to 5	VDDIO_REG_		Regulator assigned to VDDIO
			ASSIGN_OTP[2:0]	000	External regulator
				001	VPRE
				010	LDO1
				011	LDO2
				100	BUCK2
				101	BUCK3
				110	LDO3
				111	External regulator
		4 to 1	I2CDEVADDR_OTP[3:0]		VR5510 I ² C address
				0000	D0
					•••
				1111	D15
		0	VSUPCFG_OTP		VSUP threshold for startup
				0	4.9 V
				1	6.2 V
31	CFG_DEVID_OTP	7	STBY_PGOOD_EN_OTP		Enable STBY_PGOOD function
				0	Disabled
				1	Enabled
		6	STBY_POLARITY_OTP		STBY Polarity selection
				0	High in normal mode / Low in standby mode
				1	Low in normal mode / High in standby mode
		5	STBY_DISCH_OTP		Threshold selection
				0	75 mV
				1	150 mV
		4	STBY_TIMER_EN_OTP		STBY timer enable
				0	Disabled
				1	Enabled
		3 to 0	DEVICEID_OTP[3:0]		Reserved

Table 120. Main OTP map description...continued

VR5510 Product data sheet

Multi-Output PMIC with SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
32	CFG_ SSRAMP_OTP	7 to 6	VPRESRHS_MSB_OTP[1:0]		VPRE High Side pull up slew rate control
				00	PU/130 mA
				01	PU/260 mA
				10	PU/520 mA (455 kHz default value
				11	PU/900 mA (2.2 MHz default value
		5 to 4	5 to 4 VPRE_TON_MIN_OTP[1:0]		Minimum TON in PWM mode
				00	45 ns (455 kHz default value)
				01	65 ns
				10	25 ns (2.2 MHz default value)
				11	45 ns
		3 to 2	D 2 BUCK3_RAMP_OTP[1:0]		BUCK3 RAMP selection
				00	10.42 mV/µs (power up/down)
				01	3.47 mV/µs (power up/down)
				10	2.6 mV/µs (power up/down)
				11	2.08 mV/µs (power up/down)
		1 to 0	BUCK12DVS_		BUCK1/2 DVS RAMP selection
		RAMP_OTP[1:0]	00	15.6 mV/µs (power up) / 10.4 mV/µs (power down)	
				01	7.8 mV/μs (power up) / 5.2 mV/μs (power down)
				10	2.6 mV/µs (power up/down)
				11	2.23 mV/µs (power up/down)
	1	1		1	

Table 120. Main OTP map description...continued

27.3 Fail Safe OTP map overview

 Table 121.
 Fail Safe OTP map overview

Addr.	Register Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	
0B	CFG_ UVOV_ 1_OTP		VCORE_V_OTP[7:0]							
0C	CFG_ UVOV_ 2_OTP		VDDIOOVTH_	OTP[3:0]		VCOREOVTH_OTP[3:0]				
0D	CFG_ UVOV_ 3_OTP	0	VCORE_ SVS_FULL_ OFFSET_OTP		VCO	RE_SVS_CL	AMP_OTP[5	:0]		
0E	CFG_ UVOV_ 4_OTP		VMON2OVTH_	OTP[3:0]		V	/MON1OVTH	H_OTP[3:0]		

Multi-Output PMIC with SMPS and LDO

Addr.		BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	
0F	CFG_ UVOV_ 5_OTP		V	MON3OVTI	H_OTP[3:0]	1				
10	CFG_ UVOV_ 6_OTP		VDDIOUVTH_	OTP[3:0]		۱	COREUVTI	H_OTP[3:0]		
11	CFG_ UVOV_ 7_OTP		VMON2UVTH_	OTP[3:0]		١	MON1UVTI	H_OTP[3:0]		
12	CFG_ UVOV_ 8_OTP		VMON4UVTH_	OTP[3:0]		۱	MON3UVTI	H_OTP[3:0]		
13	CFG_ UVOV_ 9_OTP	HV	LDO_VMON_UV	/TH_OTP[3:0]]	HVLC	O_VMON_(OVTH_OTP	[3:0]	
14	CFG_ PGOOD_ OTP	PGOOD_ HVLDO_ VMON_OTP	RSTB2PGOOD_ OTP	PGOOD_ VMON4_ OTP	PGOOD_ VMON3_ OTP	PGOOD_ VMON2_ OTP	PGOOD_ VMON1_ OTP	PGOOD_ VDDIO_ OTP	PGOOD_ VCORE_ OTP	
15	CFG_ ABIST1_ OTP	DIS8S_OTP	ABIST1_ HVLDO_ VMON_OTP	ABIST1_ VMON4_ OTP	ABIST1_ VMON3_ OTP	ABIST1_ VMON2_ OTP	ABIST1_ VMON1_ OTP	ABIST1_ VDDIO_ OTP	ABIST1_ VCORE_ OTP	
16	CFG_ ASIL_ OTP	0	0	HVLDO_ VMON_ EN_OTP	0	VMON4_ VMON3_ EN_OTP EN_OTP		VMON2_ EN_OTP	VMON1_ EN_OTP	
17	CFG_ I2C_OTP	0	VDDIO_ VMON_ EN_OTP	WDI_ POL_OTP	0	I2CDEVID_OTP[3:0]				
18	CFG_ 1_OTP	HVLDO_\	/_OTP[1:0]	HVLDO_ MODE_ OTP	0	FCCU_ OR_ WDI_OTP	VDDIO_ V_OTP	0	0	
19	CFG_ 2_OTP		_INIT	STBY_ WINDOW_ EN_OTP	STBY_ SAFE_ DIS_OTP	STBY_ POLARITY_ FS_OTP	STBY_ EN_OTP	RSTB_ DELAY_ OTP	0	
1A	CFG_DE GLITCH1 _OTP	OV_VMON1_ OTP			_OTP[1:0]	OV_ VDDIO_ OTP	UV_MCU	_OTP[1:0]	OV_ MCU_ OTP	
1B	CFG_DE GLITCH2 _OTP	OV_VMON3_ OTP	UV_VMON2_	OTP[1:0] OV_ VMON2_ OTP UV_		UV_VMON?	UV_VMON1_OTP[1:0]		UV_HVLDO_ OTP[1:0]	
1C	CFG_DE GLITCH3 _OTP	0	0	0	UV_VMON4_OTP[1:0]		OV_ VMON4_ OTP	UV_VMON4_ _ OTP[1:0]		

Table 121. Fail Safe OTP map overview...continued

Multi-Output PMIC with SMPS and LDO

27.4 Fail Safe OTP map description and S32G default setting

	-	_	on and S32G default setting		
Address	Register	Bit	Symbol	Value	Description
0B	CFG_UVOV_1_OTP	7 to 0	VCORE_V_OTP[7:0]		BUCK1 output voltage
				0000 0000	0.4 V
				0100 0000	…to (6.25 mV step) 0.8 V
				1011 0000	1.5 V
				1011 0001	1.8 V
0C	CFG_UVOV_2_OTP	7 to 4	VDDIOOVTH_OTP[3:0]		VDDIO over-voltage threshold
				0000	104.5%
				0001	105%
				0010	105.5%
				0011	106%
				0100	106.5%
				0101	107%
				0110	107.5%
				0111	108%
				1000	108.5%
				1001	109%
				1010	109.5%
				1011	110%
				1100	102.5%
				1101	103%
				1110	103.5%
				1111	104%
		3 to 0	VCOREOVTH_OTP[3:0]		VCOREMON over-voltage threshold
				0000	104.5%
				0001	105%
				0010	105.5%
				0011	106%
				0100	106.5%
				0101	107%
				0110	107.5%
				0111	108%
				1000	108.5%

Table 122. Fail Safe OTP map description and S32G default setting

Multi-Output PMIC with SMPS and LDO

ddress	Register	Bit	Symbol	Value	Description
				1001	109%
				1010	109.5%
				1011	110%
				1100	102.5%
				1101	103%
				1110	103.5%
				1111	104%
0D	CFG_UVOV_3_OTP	6	VCORE_SVS_		Enable full offset range for SVS
			FULL_OFFSET_OTP	0	Only negative offset
				1	Positive or negative offset
		5 to 0	VCORE_SVS_		SVS max steps value available
			CLAMP_OTP[5:0]	000000	No SVS
				000001	2 steps available
				000011	4 steps available
			000111	8 steps available	
				001111	16 steps available
				011111	32 steps available
				111111	64 steps available
0E	CFG_UVOV_4_OTP	7 to 4	VMON2OVTH_OTP[3:0]		VMON2 over-voltage threshold
				0000	104.5%
				0001	105%
				0010	105.5%
				0011	106%
				0100	106.5%
				0101	107%
				0110	107.5%
				0111	108%
				1000	108.5%
				1001	109%
				1010	109.5%
				1011	110%
				1100	102.5%
				1101	103%
				1110	103.5%
				1111	104%
		3 to 0	VMON1OVTH_OTP[3:0]		VMON1 over-voltage threshold

Table 122. Fail Safe OTP map description and S32G default setting...continued

All information provided in this document is subject to legal disclaimers.

Multi-Output PMIC with SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
				0000	104.5%
				0001	105%
				0010	105.5%
				0011	106%
				0100	106.5%
				0101	107%
				0110	107.5%
				0111	108%
				1000	108.5%
				1001	109%
				1010	109.5%
				1011	110%
				1100	102.5%
				1101	103%
				1110	103.5%
				1111	104%
0F	CFG_UVOV_5_OTP	7 to 4	VMON4OVTH_OTP[3:0]		VMON4 over-voltage threshold
				0000	104.5%
			0001	105%	
				0010	105.5%
				0011	106%
				0100	106.5%
				0101	107%
				0110	107.5%
				0111	108%
				1000	108.5%
				1001	109%
				1010	109.5%
				1011	110%
				1100	102.5%
				1101	103%
				1110	103.5%
				1111	104%
		3 to 0	VMON3OVTH_OTP[3:0]		VMON3 over-voltage threshold
				0000	104.5%
				0001	105%

Table 122. Fail Safe OTP map description and S32G default setting...continued

Multi-Output PMIC with SMPS and LDO

	-	_	on and S32G default setting		
ddress	Register	Bit	Symbol	Value	Description
				0010	105.5%
				0011	106%
				0100	106.5%
				0101	107%
				0110	107.5%
				0111	108%
				1000	108.5%
				1001	109%
				1010	109.5%
				1011	110%
				1100	102.5%
				1101	103%
				1110	103.5%
				1111	104%
10 C	CFG_UVOV_6_OTP	7 to 4	VDDIOUVTH_OTP[3:0]		VDDIO under-voltage threshold
				0000	95.5%
				0001	95%
				0010	94.5%
				0011	94%
				0100	93.5%
				0101	93%
				0110	92.5%
				0111	92%
				1000	91.5%
				1001	91%
				1010	90.5%
				1011	90%
				1100	97.5%
				1101	97%
				1110	96.5%
				1111	96%
		3 to 0	VCOREUVTH_OTP[3:0]		VCOREMON under- voltage threshold
				0000	95.5%
				0001	95%
				0010	94.5%
				0011	94%

Table 122. Fail Safe OTP map description and S32G default setting...continued

Product data sheet

Multi-Output PMIC with SMPS and LDO

	Fail Safe OTP map description and S32G default settingcontinued					
Address	Register	Bit	Symbol	Value	Description	
				0100	93.5%	
				0101	93%	
				0110	92.5%	
				0111	92%	
				1000	91.5%	
				1001	91%	
				1010	90.5%	
				1011	90%	
				1100	97.5%	
				1101	97%	
				1110	96.5.5%	
				1111	96%	
11	CFG_UVOV_7_OTP	7 to 4	VMON2UVTH_OTP[3:0]		VMON2 under-voltage threshold	
				0000	95.5%	
				0001	95%	
				0010	94.5%	
				0011	94%	
				0100	93.5%	
			0101	93%		
				0110	92.5%	
				0111	92%	
				1000	91.5%	
				1001	91%	
				1010	90.5%	
				1011	90%	
				1100	97.5%	
				1101	97%	
				1110	96.5%	
				1111	96%	
		3 to 0	VMON1UVTH_OTP[3:0]		VMON1 under-voltage threshold	
				0000	95.5%	
				0001	95%	
				0010	94.5%	
				0011	94%	
				0100	93.5%	
				0101	93%	

Table 122. Fail Safe OTP map description and S32G default setting...continued

Multi-Output PMIC with SMPS and LDO

	Fail Safe OTP map description and S32G default settingcontinued						
Address	Register	Bit	Symbol	Value	Description		
				0110	92.5%		
				0111	92%		
				1000	91.5%		
				1001	91%		
				1010	90.5%		
				1011	90%		
				1100	97.5%		
				1101	97%		
				1110	96.5%		
				1111	96%		
12	CFG_UVOV_8_OTP	7 to 4	VMON4UVTH_OTP[3:0]		VMON4 under-voltage threshold		
				0000	95.5%		
				0001	95%		
				0010	94.5%		
				0011	94%		
				0100	93.5%		
				0101	93%		
				0110	92.5%		
				0111	92%		
				1000	91.5%		
				1001	91%		
				1010	90.5%		
				1011	90%		
				1100	97.5%		
				1101	97%		
				1110	96.5%		
				1111	96%		
		3 to 0	VMON3UVTH_OTP[3:0]		VMON3 under-voltage threshold		
				0000	95.5%		
				0001	95%		
				0010	94.5%		
				0011	94%		
				0100	93.5%		
				0101	93%		
				0110	92.5%		
				0111	92%		

Table 122. Fail Safe OTP map description and S32G default setting...continued

Multi-Output PMIC with SMPS and LDO

	Fail Safe OTP map description and S32G default settingcontinued					
Address	Register	Bit	Symbol	Value	Description	
				1000	91.5%	
				1001	91%	
				1010	90.5%	
				1011	90%	
				1100	97.5%	
				1101	97%	
				1110	96.5%	
				1111	96%	
13	CFG_UVOV_9_OTP	7 to 4	HVLDO_VMON_ UVTH_OTP[3:0]		HVLDO VMON under- voltage threshold	
				0000	95.5%	
				0001	95%	
				0010	94.5%	
				0011	94%	
				0100	93.5%	
				0101	93%	
				0110	92.5%	
				0111	92%	
				1000	91.5%	
				1001	91%	
				1010	90.5%	
				1011	90%	
				1100	97.5%	
				1101	97%	
				1110	96.5%	
				1111	96%	
		3 to 0	HVLDO_VMON_ OVTH_OTP[3:0]		HVLDO VMON over- voltage threshold	
				0000	104.5%	
				0001	105%	
				0010	105.5%	
				0011	106%	
				0100	106.5%	
				0101	107%	
				0110	107.5%	
				0111	108%	
				1000	108.5%	

Table 122. Fail Safe OTP map description and S32G default setting...continued

Product data sheet

Multi-Output PMIC with SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
				1001	109%
				1010	109.5%
				1011	110%
				1100	102.5%
				1101	103%
				1110	103.5%
				1111	104%
14	CFG_PGOOD_OTP	7	PGOOD_HVLDO_		HVLDO VMON assigned to PGOOD
			VMON_OTP	0	Not assigned
				1	Assigned
		6	RSTB2PGOOD_OTP		RSTB assigned to PGOOD
				0	Not assigned
				1	Assigned
		5	PGOOD_VMON4_OTP		VMON4 assigned to PGOOD
				0	Not assigned
				1	Assigned
		4	PGOOD_VMON3_OTP		VMON3 assigned to PGOOD
				0	Not assigned
				1	Assigned
		3	PGOOD_VMON2_OTP		VMON2 assigned to PGOOD
				0	Not assigned
				1	Assigned
		2	PGOOD_VMON1_OTP		VMON1 assigned to PGOOD
				0	Not assigned
				1	Assigned
		1	PGOOD_VDDIO_OTP		VDDIO VMON assigned to PGOOD
				0	Not assigned
				1	Assigned
		0	PGOOD_VCORE_OTP		VCOREMON assigned to PGOOD
				0	Not assigned
				1	Assigned
15	CFG_ABIST1_OTP	7	DIS8S_OTP		Disable the Fail Safe 8s counter
				0	Counter activated
				1	Disabled
		6	ABIST1_HVLDO_ VMON_OTP		HVLDO VMON assignment to ABIST1
				0	Not assigned

Table 122. Fail Safe OTP map description and S32G default setting...continued

Multi-Output PMIC with SMPS and LDO

ddress	Register	Bit	Symbol	Value	Description
				1	Assigned
		5	ABIST1_VMON4_OTP		VMON4 assignment to ABIST1
				0	Not assigned
				1	Assigned
		4	ABIST1_VMON3_OTP		VMON3 assignment to ABIST1
				0	Not assigned
				1	Assigned
		3	ABIST1_VMON2_OTP		VMON2 assignment to ABIST1
				0	Not assigned
				1	Assigned
		2	ABIST1_VMON1_OTP		VMON1 assignment to ABIST1
				0	Not assigned
				1	Assigned
		1	ABIST1_VDDIO_OTP		VDDIO VMON assignment to ABIST1
				0	Not assigned
				1	Assigned
		0	ABIST1_VCORE_OTP		VCOREMON assignment to ABIST
				0	Not assigned
				1	Assigned
16	CFG_ASIL_OTP	5	HVLDO_VMON_EN_OTP		HVLDO VMON enable
				0	Disabled
				1	Enabled
		3	VMON4_EN_OTP		VMON4 enable
				0	Disabled
				1	Enabled
		2	VMON3_EN_OTP		VMON3 enable
				0	Disabled
				1	Enabled
		1	VMON2_EN_OTP		VMON2 enable
				0	Disabled
				1	Enabled
		0	VMON1_EN_OTP		VMON1 enable
				0	Disabled
				1	Enabled
17	CFG_I2C_OTP	6	VDDIO_VMON_EN_OTP		VDDIO VMON enable
		1			

Table 122. Fail Safe OTP map description and S32G default setting...continued

Multi-Output PMIC with SMPS and LDO

Address	Register	Bit	Symbol	Value	Description
				1	Enabled
		5	WDI_POL_OTP		WDI Polarity configuration
				0	Falling edge
				1	Rising edge
		3 to 0	I2CDEVID_OTP[3:0]		VR5510 I ² C address
				0000	Address is D0
				1111	Address is D15
18	CFG_1_OTP	7 to 6	HVLDO_V_OTP[1:0]		HVLDO VMON voltage selection
				00	0.8 V
				10	3.3 V
		5	HVLDO_MODE_OTP		HVLDO mode selection
				0	Switch mode connected to BUCK1
				1	LDO mode
		3	FCCU_OR_WDI_OTP		Enable WDI function on FCCU1
				0	Disabled
				1	Enabled
		2	VDDIO_V_OTP		VDDIO VMON selection
				0	1.8 V
				1	3.3 V
19	CFG_2_OTP	7 to 6	WD_INIT_ TIMEOUT_OTP[1:0]	00	256 ms
				01	1024 ms
				10	32.5 s
				11	67 s
		5	STBY_WINDOW_EN_OTP		Enable standby window function
				0	Disabled
				1	Enabled
		4	STBY_SAFE_DIS_OTP		Enable safe standby entry
				0	I ² C command + STBY Pin transitior
				1	STBY pin transition
		3	STBY_POLARITY_FS_OTP		STBY Pin polarity
				0	High in normal mode / Low in standby mode
				1	Low in normal mode / High in standby mode
		2	STBY_EN_OTP		Enable standby function
				0	Disabled

VR5510

© NXP B.V. 2021. All rights reserved.

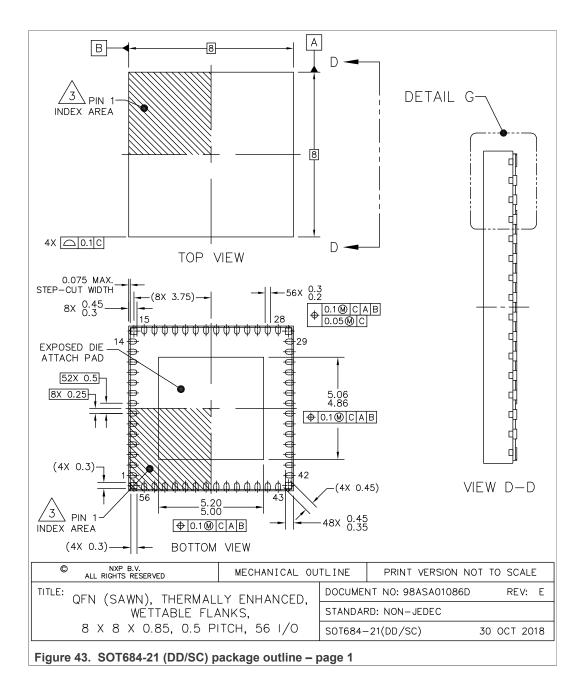
Multi-Output PMIC with SMPS and LDO

ddress	Register	Bit	Symbol	Value	Description
				1	Enabled
		1	RSTB_DELAY_OTP		Add delay to release RSTB/PGOOD pins
				0	No delay
				1	5 ms delay
1A	CFG_	7	OV_VMON1_OTP		VMON1 OV filtering time
	DEGLITCH1_OTP			0	25 µs
				1	45 µs
		6	OV_HVLDO_OTP		HVLDO VMON OV filtering time
				0	25 µs
				1	45us
		5 to 4	UV_VDDIO_OTP[1:0]		VDDIO UV filtering time
				00	5 µs
				01	15 µs
				10	25 µs
				11	40 µs
		3	OV_VDDIO_OTP		VDDIO VMON OV filtering time
				0	25 µs
				1	45 µs
		2 to 1	UV_MCU_OTP[1:0]		VCOREMON UV filtering time
				00	5 µs
				01	15 µs
				10	25 µs
				11	40 µs
		0	OV_MCU_OTP		VCOREMON OV filtering time
				0	25 µs
				1	45 µs
1B	CFG_	7	OV_VMON3_OTP		VMON3 OV filtering time
	DEGLITCH2_OTP			0	25 µs
				1	45 µs
		6 to 5	UV_VMON2_OTP[1:0]		VMON2 UV filtering time
				00	5 µs
				01	15 µs
				10	25 µs
				11	40us
		4	OV_VMON2_OTP		VMON2 OV filtering time
				0	25 µs

Table 122. Fail Safe OTP map description and S32G default setting...continued

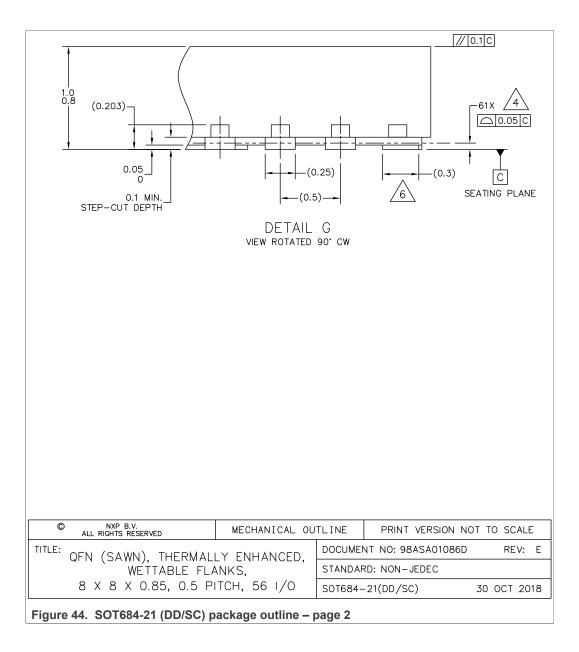
Multi-Output PMIC with SMPS and LDO

ddress	Register	Bit	Symbol	Value	Description
				1	45 µs
		3 to 2	UV_VMON1_OTP[1:0]		VMON1 UV filtering time
				00	5 µs
				01	15 µs
				10	25 µs
				11	40 µs
		1 to 0	UV_HVLDO_OTP[1:0]		HVLDO VMON UV filtering time
				00	5 µs
				01	15 µs
				10	25 µs
				11	40 µs
1C	CFG_ DEGLITCH3_OTP	4 to 3	UV_VMON4_OTP[1:0]		VMON4 UV filtering time
				00	5 µs
				01	15 µs
				10	25 µs
				11	40 µs
		2	OV_VMON4_OTP		VMON4 OV filtering time
				0	25 µs
				1	45 µs
		1 to 0	UV_VMON3_OTP[1:0]		VMON3 UV filtering time
				00	5 µs
				01	15 µs
				10	25 µs
				11	40 µs

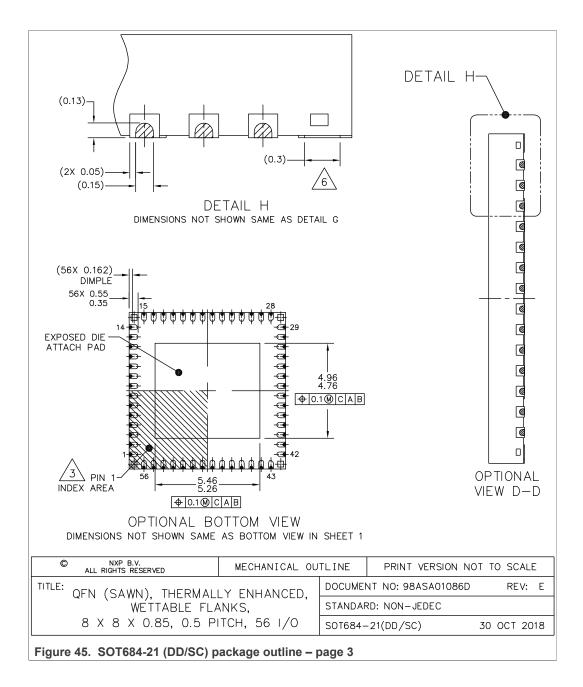

Table 122. Fail Safe OTP map description and S32G default setting...continued

28 Package Drawing and PCB Guidelines

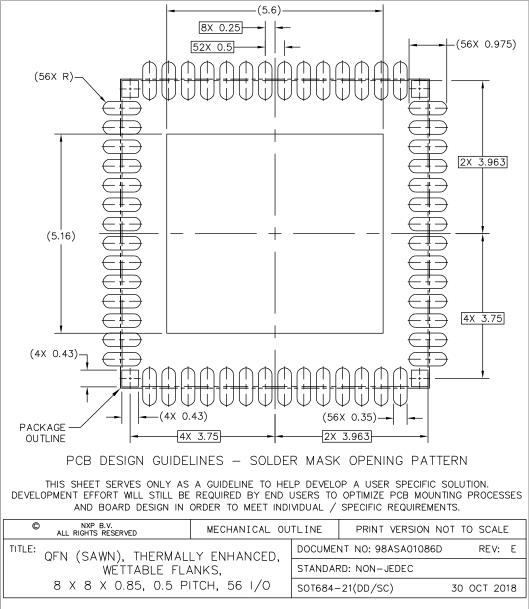
28.1 Landing pad information for Automotive part numbers


VR5510 package is a QFN (sawn), thermally enhanced wettable flanks, 8x8x0.85, 0.5 pitch, 56 pins.

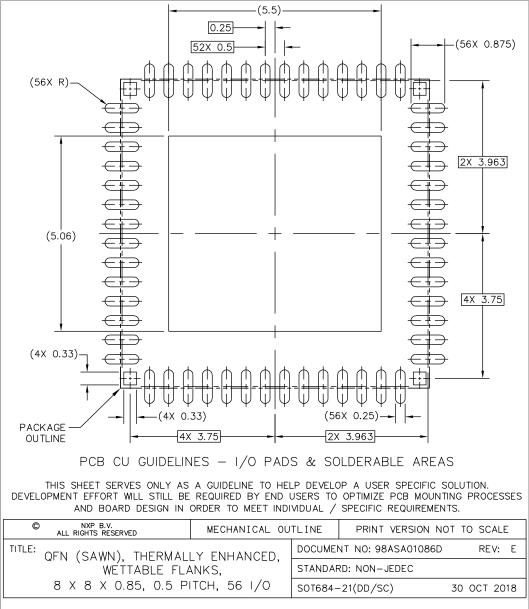
Multi-Output PMIC with SMPS and LDO



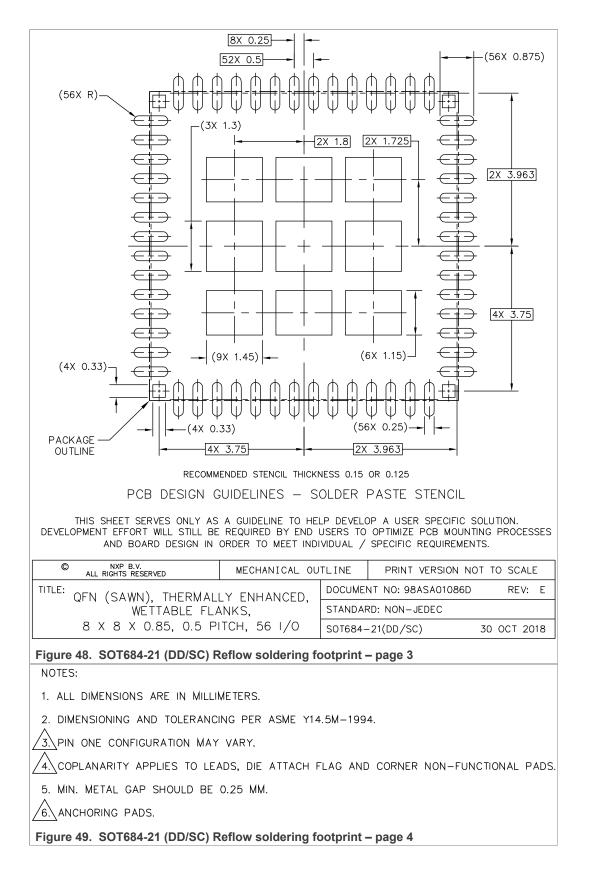
Product data sheet


Multi-Output PMIC with SMPS and LDO

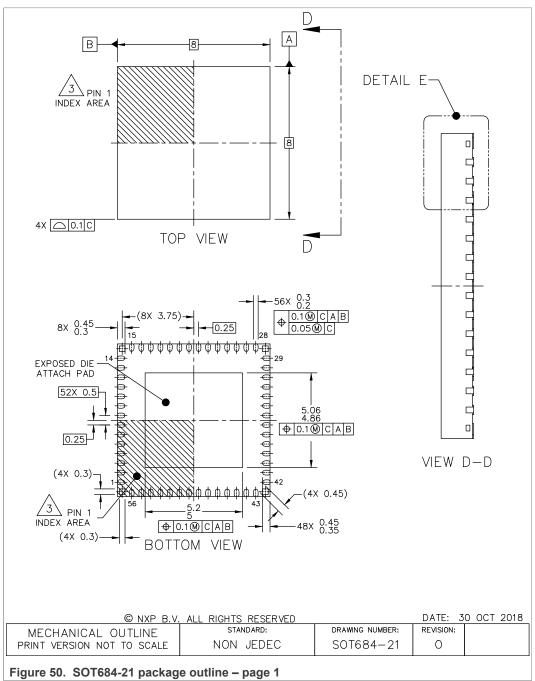
Multi-Output PMIC with SMPS and LDO

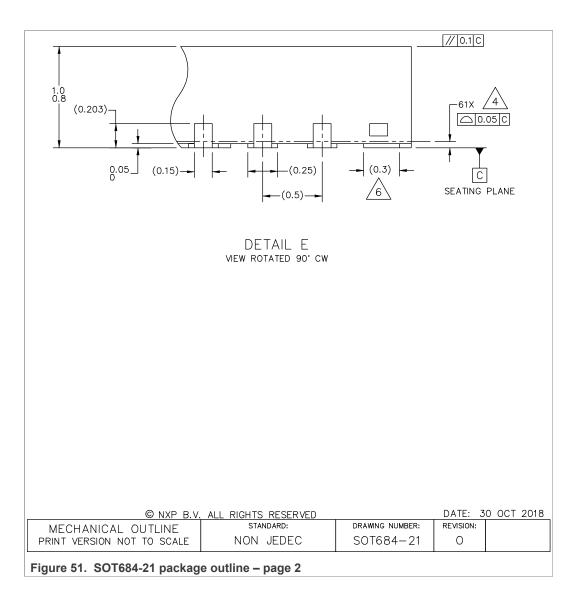


Multi-Output PMIC with SMPS and LDO



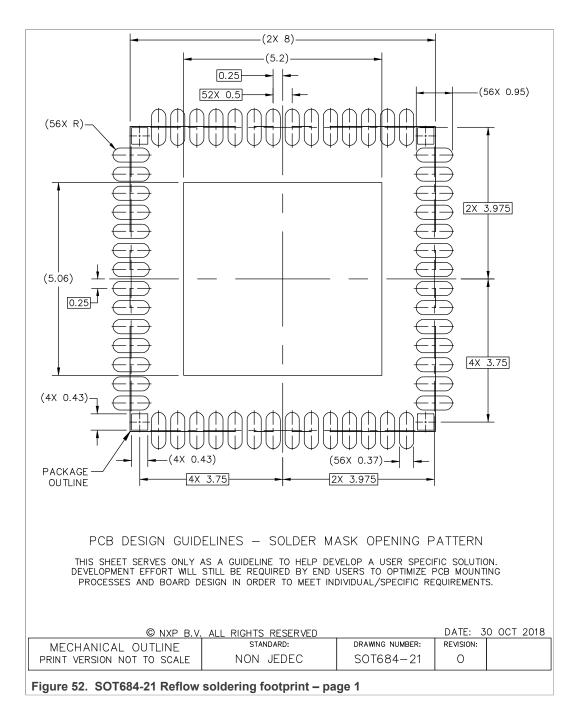
Multi-Output PMIC with SMPS and LDO


Multi-Output PMIC with SMPS and LDO

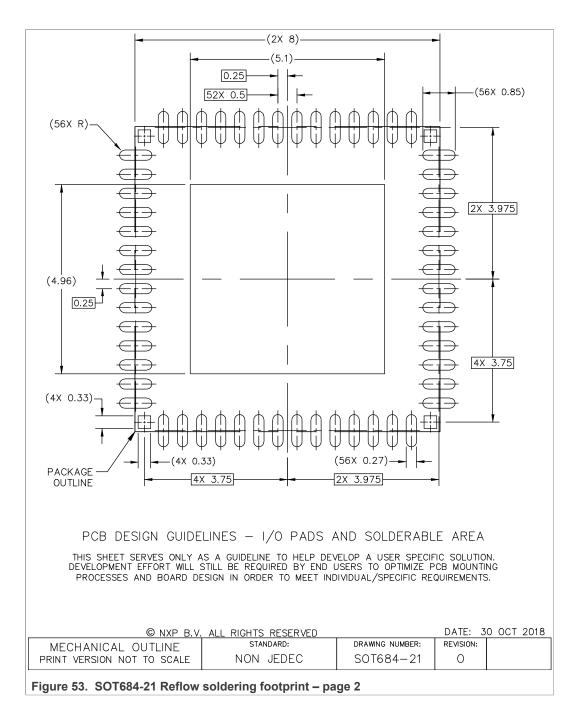

Multi-Output PMIC with SMPS and LDO

28.2 Landing pad information for Industrial part numbers

VR5510 package is a QFN (sawn), 8x8x0.85, 0.5 pitch, 56 pins.



Multi-Output PMIC with SMPS and LDO


Product data sheet

Multi-Output PMIC with SMPS and LDO

VR5510 Product data sheet

Multi-Output PMIC with SMPS and LDO

VR5510 Product data sheet

Multi-Output PMIC with SMPS and LDO

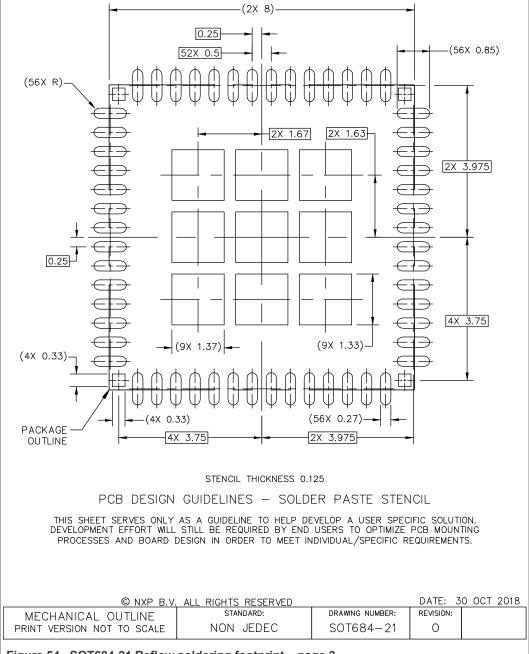
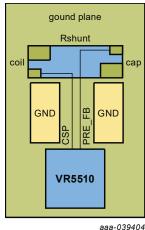


Figure 54. SOT684-21 Reflow soldering footprint – page 3

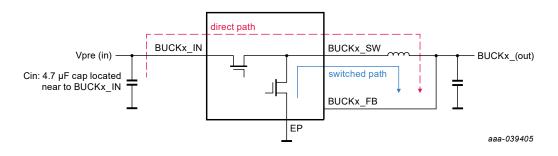

28.3 PCB guidelines

28.3.1 Component selection

- SMPS input and output capacitors must be chosen with low ESR (ceramic or MLCC type of capacitors). X7R ceramic type is preferred. Input decoupling capacitors must be placed as close as possible to the device pin. Output capacitor voltage rating must be selected to be 3x the voltage output value to minimize the DC bias degradation.
- SMPS inductors must be chosen with ISAT higher than maximum inductor peak current.

28.3.2 VPRE

- Inductor charging and discharging current loop must be designed as small as possible.
- Input decoupling capacitors must be placed close to the high-side drain transistor pin.
- The bootstrap capacitor must be placed close to the device pin using wide and short track to connect to the external low-side drain transistor.
- PRE_GLS, PRE_GHS and PRE_SW tracks must be wide and short and should not cross any sensitive signal (current sensing, for example).
- PRE_FB used as voltage feedback AND current sense must be connected to RSHUNT and routed as a pair with CSP:



• The external transistor thermal shape should be in the range of 25 x 25 mm for optimum Rth.

 See LFPAK56 application note for more details: <u>http://assets.nexperia.com/documents/</u> application-note/AN10874.pdf

28.3.3 LVBUCKs

• Inductor charging and discharging current loop must be designed as small as possible:

• Input decoupling capacitors must be placed close to BUCKx_IN pins.

29 References

Document	Description	URL
VR5510 Safety Manual	Safety manual	Available at DocStore
VR5510 FMEDA	FMEDA	Available at DocStore
VR5510 GUI	NXP GUI for VR5510 (includes OTP and power dissipation tools)	https://www.nxp.com/products/power-management/pmics- and-sbcs/pmics/multi-channel-9-pmic-for-s32g-processor-8- high-power-1-low-power-fit-for-asil-d-safety-level:VR5510? tab=Design_Tools_Tab
AN13118	VR5510 S32G Safety Concept	https://www.nxp.com/docs/en/application-note/AN13118.pdf
AN12880	VR5510 Low Power Standby Mode	https://www.nxp.com/docs/en/application-note/AN12880.pdf

30 Revision History

Table 124. Revision history

Document ID	Release date	Data sheet status		hange otice	Supersedes
VR5510 v.4	20211006	Product data sheet	20	021090341	VR5510 v.3
Modifications	Commu Section 4 - Change - Change - Change - Change - Deleted Figure 4 - Change - Added " - Added " - Added " - Added " - Change - Change	To "The output voltage is configurable by OTP from 3.3 V to 5.2 V" V to 5.3 V" I to "V _{PRE_UVH} , V _{PRE_UVL} , and V _{PRE_FB_OV} thresholds" from "V _{PRE_3} Calculation guidelines, Use case calculation, Use case stability ve Figure 14, Phase and gain margin simulation Figure 15, Transient response simulation	ent applications. disabled and VSU from "The output v _UVH, V _{PRE_UVL} , an	IP > VSUP_U voltage is cor nd V _{PREOV2} th	IV" from "Those nfigurable by OTP aresholds"

Document ID	Release date	Data sheet status		Change notice	Supersedes
Document ID	date • Table 11 - Change • VPRES • Table 13 - Deleted • Section 11 - Change V" - Table 15 • Table 17 • IsucK12 • Cour_BU • Table 19 • IsucK3_C • Cour_BU • Table 21 • IsucA3_C	I to "V _{TON} " from "V _{PRE_START} " and deleted "(Softstart ramp = C, Added rows with the following Min values: 57.8, 94, and C VR5100 Parameters" and associated values	352.8 from "(CFG_BOOST_ /SUP = 12 V" from "Qui SUP = 12 V" from "Quiescer ent capability" from "Qu	notice)" from the sam 1_OTP register escent Current escent Current, nt Current, No I	er row ar) from 4.5 V to 5.74 , PFM Mode" PFM Mode" oad"
	 C_{OUT_LC} capabili <u>Table 22</u> I_{LDO23_C} C_{OUT_LC} <u>Section 16</u> C_{OUT_H} 	_{D1_400} , Changed to "Effective output capacitor, 400 mA curr " and changed Min to "4.5" from "6.8" and changed Max to Changed parameter to "Quiescent Current, No load, VSUF _{D23} , Changed Min to "3.3" from "4.7" and changed Max to "	ent capability" from "Ou "100" from "—" P = 12 V" from "Quiesce		
	• <u>Table 29</u>	(± 10°C)" to "Threshold" header _E , (FIN_DIV I2C configuration), Changed units to "MHz" fro	m "kHz"		
	 PWRON PWRON PWRON PWRON Table 120 Address Address 	1_{VIL} , Changed Min to "—" from "3.25" and Max to "2.7" from 2_{VIL} , Changed Min to "—" from "1" and Max to "0.7" from "- 1_{VIH} , Changed Min to "3.5" from "—" and Max to "—" from ' 2_{VIH} , Changed Min to "1.15" from "—" and Max to "—" from 19, Value 100000, Changed to "504 mV/µs" from "655.2 m 2B, Changed to "VPRE Internal Reference soft start ramp" 2B, Value 0, Added "(VPRE will ramp up in 1 ms for 3.3 V s	_" '3" "0.85" V/µs" from "VPRE soft start ra	amp"	
	- Address	2B, Value 1, Added "(VPRE will ramp up in 500 µms for 3.3			
VR5510 v.3	20210303	Product data sheet		NA	VR5510 v.2
VR5510 v.2	20201222	Product data sheet		NA	VR5510 v.1
VR5510 v.1	20201117	Product data sheet		NA	NA

Table 124. Revision history...continued

31 Legal information

31.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

31.2 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

31.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without

notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Product data sheet

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

Suitability for use in automotive applications — This NXP product has been qualified for use in automotive applications. It has been developed in accordance with ISO 26262, and has been ASIL-classified accordingly. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referred to as "Critical Applications"), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys' fees) that NXP may incur related to customer's incorporation of any product in a Critical Application.

31.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

Tables

Tab. 1.	Orderable parts3	Ta
Tab. 2.	VR5510 pin descriptions6	Ta
Tab. 3.	Maximum ratings9	Ta
Tab. 4.	Electrical characteristics10	Т
Tab. 5.	Thermal ratings11	Т
Tab. 6.	VR5510 EMC compliancy chart 11	Т
Tab. 7.	Electrical characteristics	Т
Tab. 7. Tab. 8.	Deep Sleep mode OTP bit settings	Ta
Tab. 8. Tab. 9.	Electrical characteristics	Ta
		-
Tab. 10.	Recommended compensation network	T
	components25	Та
Tab. 11.	Electrical characteristics25	Т
Tab. 12.	Recommended external MOSFETS28	Ta
Tab. 13.	VPRE efficiency and the sample BOM used	Ta
	for measurement29	Т
Tab. 14.	VPRE PFM current example with VPRE set	Т
	to 3.3 V/5 V and VIN to 12 V for PFM TON 29	Т
Tab. 15.	Output current example	Т
Tab. 16.	Electrical characteristics	Т
Tab. 10.	Electrical characteristics	T
		I
Tab. 18.	BUCK1 and BUCK2 theoretical efficiency 37	-
Tab. 19.	Electrical characteristics	T
Tab. 20.	BUCK3 theoretical efficiency40	Т
Tab. 21.	Electrical characteristics41	Та
Tab. 22.	Electrical characteristics43	Ta
Tab. 23.	Electrical characteristics45	Ta
Tab. 24.	Center die temperature thresholds46	Ta
Tab. 25.	Electrical characteristics46	Т
Tab. 26.	Manual Frequency Tuning configuration 47	Т
Tab. 27.	FOUT multiplexer selection	Т
Tab. 28.	Low Power Clock Selection	Т
Tab. 29.	Electrical characteristics	Т
Tab. 30.	AMUX output selection	Т
Tab. 30. Tab. 31.	Electrical characteristics	Ta
Tab. 31. Tab. 32.	Electrical characteristics	
		Ta
Tab. 33.	Electrical characteristics	Ta
Tab. 34.	List of interrupts from Main logic53	Ta
Tab. 35.	List of interrupts from Fail-safe logic	Та
Tab. 36.	PSYNC_PGOOD_EXT_OTP configuration 56	Т
Tab. 37.	Electrical characteristics56	Ta
Tab. 38.	STBY_DISCH_OTP configuration57	Ta
Tab. 39.	EXT_STBY_DISCH_OTP configuration57	Ta
Tab. 40.	STBY_PGOOD_DLY_OTP configuration 57	Ta
Tab. 41.	Electrical characteristics	Т
Tab. 42.	Electrical characteristics58	Т
Tab. 43.	Standby timer duration58	Т
Tab. 44.	QM VS ASIL-B VS ASIL-D safety features60	Т
Tab. 45.	Watchdog window period configuration	Т
Tab. 46.	Watchdog window duty cycle configuration62	T
Tab. 47.	Watchdog error counter	Ta
Tab. 48.	Watchdog refresh counter configuration	Т
Tab. 49.	Watchdog error impact configuration65	_
Tab. 50.	Fault recovery window configuration	Та
Tab. 51.	FCCU pins configuration67	
Tab. 52.	FCCU12 polarity configuration67	Ta
Tab. 53.	FCCU12 FS impact configuration67	Та

ab. 54.	FCCU12 polarity configuration	
ab. 55.	FCCU12 impact configuration	
ab. 56.	Electrical characteristics	
ab. 57.	VCOREMON impact configuration	
ab. 58.	Electrical characteristics	
ab. 59.	SVS offset configuration	
ab. 60.	SVS clamp configuration	
ab. 61.	VDDIO FS impact configuration	
ab. 62.	Electrical characteristics	
ab. 63.	HVLDO monitor FS impact configuration	
ab. 64.	Electrical characteristics	
ab. 65.	VMONx FS impact configuration	
ab. 66.	Electrical characteristics	
ab. 67.	Fault Error Counter configuration	
ab. 68.	Fault Error Counter impact configuration	
ab. 69.	Fail Safe fault list and reaction	
ab. 70.	Electrical characteristics	
ab. 71.	Electrical characteristics	
ab. 72.	Electrical characteristics	82
ab. 73.	FS_RELEASE_FS0B register based on WD SEED	02
ab. 74.	Standby timing window	
ab. 74. ab. 75.	ABIST coverage	
ab. 75. ab. 76.	ABIST coverage	
ab. 70. ab. 77.	Electrical characteristics	
ab. 77. ab. 78.	I2C address arrangement	
ab. 70. ab. 79.	Electrical characteristics	
ab. 70. ab. 80.	Register mapping	
ab. 80. ab. 81.	M FLAG register description	
ab. 82.	M_MODE register description	
ab. 83.	M_SM_CTRL1 register description	
ab. 84.	M_REG_CTRL1 register description	
ab. 85.	M_REG_CTRL2 register description	
ab. 86.	M_REG_CTRL3 register description	98
ab. 87.	M_TSD_CFG register description	100
ab. 88.	M_AMUX register description	.101
ab. 89.	M_CLOCK1 register description	.102
ab. 90.	M_CLOCK2 register description	.103
ab. 91.	M_INT_MASK1 register description	104
ab. 92.	M_INT_MASK2 register description	
ab. 93.	M_FLAG1 register description	
ab. 94.	M_FLAG2 register description	
ab. 95.	M_FLAG3 register description	
ab. 96.	M_VMON_REGX register description	
ab. 97.	M_LVB1_SVS register description	
ab. 98.	M_LVB1_STBY_DVS register description	
ab. 99.	M_MEMORY0 register description	
ab. 100.	M_MEMORY1 register description	
ab. 101.	M_DEVICEID register description	
ab. 102.	FS_GRL_FLAGS register description	121
ab. 103.	FS_I_OVUV_SAFE_REACTION1 register	400
		122
ab. 104.	FS_I_OVUV_SAFE_REACTION2 register	104
ab 105	description	
ab. 105.	FS_I_ABIST2_CTRL register description	
ab. 106.	FS_I_WD_CFG register description	121

VR5510

© NXP B.V. 2021. All rights reserved.

Multi-Output PMIC with SMPS and LDO

Tab. 107.	FS_I_SAFE_INPUTS register description 128
Tab. 108.	FS_I_FSSM register description 129
Tab. 109.	FS_I_SVS register description
Tab. 110.	FS_WD_WINDOW register description
Tab. 111.	FS_WD_SEED register description133
Tab. 112.	FS_WD_ANSWER register description
Tab. 113.	FS_OVUVREG_STATUS register
	description
Tab. 114.	FS_RELEASE_FS0B register description 136
Tab. 115.	FS_SAFE_IOS register description

Figures

Fig. 1.	VR5510 simplified application diagram2
Fig. 2.	Internal block diagram5
Fig. 3.	VR5510 Pin configuration in QFN 56-pin
-	with exposed pad6
Fig. 4.	VR5510 Operating voltage range10
Fig. 5.	Functional state diagram13
Fig. 6.	Power sequencing
Fig. 7.	Typical start up diagram16
Fig. 8.	Debug mode entry 17
Fig. 9.	Application flow chart
Fig. 10.	Debug flow chart20
Fig. 11.	Standby flow chart
Fig. 12.	VPRE schematic
Fig. 13.	Type 2 compensation network concept
Fig. 14.	MOSFET gate charge definition
Fig. 15.	BOOST schematic
Fig. 16.	BUCK1/2 standalone schematic
Fig. 17.	BUCK1/2 dual-phase schematic
Fig. 18.	BUCK3 schematic
Fig. 19.	LDO1 block diagram41
Fig. 20.	LDO2 block diagram42
Fig. 21.	LDO3 block diagram43
Fig. 22.	HVLDO block diagram44
Fig. 23.	Clock management block diagram
Fig. 24.	AMUX block diagram51
Fig. 25.	Synchronization of two VR551055
Fig. 26.	Synchronization of one VR5510 and one
	PF82
Fig. 27.	Application schematic59
Fig. 28.	Fail Safe block diagram60
Fig. 29.	Watchdog window error61
Fig. 30.	Challenger watchdog formula63
Fig. 31.	Watchdog error counter configurations
Fig. 32.	Watchdog refresh counter configurations 65

Tab. 116.	FS_DIAG_SAFETY register description	139
Tab. 117.	FS_INTB_MASK register description	141
Tab. 118.	FS_STATES register description	143
Tab. 119.	Main OTP map overview	143
Tab. 120.	Main OTP map description	145
Tab. 121.	Fail Safe OTP map overview	160
Tab. 122.	Fail Safe OTP map description and S32G	
	default setting	162
Tab. 123.	References	186
Tab. 124.	Revision history	186

Fig. 33. Fig. 34.	Fault recovery strategy FCCU bi-stable protocol	
Fig. 35.	FCCU connection	
Fig. 36.	SVS principle	
Fig. 37.	VDDIO monitor principle	
Fig. 38.	VMONx monitor principle	
Fig. 39.	Fault Error Counter max value 2 or 6	
	example	78
Fig. 40.	PGOOD pin architecture	80
Fig. 41.	RSTB pin architecture	81
Fig. 42.	FS0B pin architecture	82
Fig. 43.	SOT684-21 (DD/SC) package outline –	
	page 1	174
Fig. 44.	SOT684-21 (DD/SC) package outline –	
	page 2	175
Fig. 45.	SOT684-21 (DD/SC) package outline -	
	page 3	176
Fig. 46.	SOT684-21 (DD/SC) Reflow soldering	
	footprint – page 1	177
Fig. 47.	SOT684-21 (DD/SC) Reflow soldering	
	footprint – page 2	178
Fig. 48.	SOT684-21 (DD/SC) Reflow soldering	
	footprint – page 3	179
Fig. 49.	SOT684-21 (DD/SC) Reflow soldering	
	footprint – page 4	
Fig. 50.	SOT684-21 package outline – page 1	
Fig. 51.	SOT684-21 package outline - page 2	181
Fig. 52.	SOT684-21 Reflow soldering footprint –	
	page 1	182
Fig. 53.	SOT684-21 Reflow soldering footprint –	400
	page 2	183
Fig. 54.	SOT684-21 Reflow soldering footprint –	101
	page 3	184

Multi-Output PMIC with SMPS and LDO

Contents

2Simplified Application Diagram23Features and Benefits24Applications35Ordering Information36Internal Block Diagram57Pinout Information67.1Pin description68General Product Characteristics98.1Maximum ratings98.2Electrical characteristics9
4Applications35Ordering Information36Internal Block Diagram57Pinout Information67.1Pin description68General Product Characteristics98.1Maximum ratings9
5Ordering Information36Internal Block Diagram57Pinout Information67.1Pin description68General Product Characteristics98.1Maximum ratings9
6Internal Block Diagram57Pinout Information67.1Pin description68General Product Characteristics98.1Maximum ratings9
7Pinout Information67.1Pin description68General Product Characteristics98.1Maximum ratings9
7.1Pin description68General Product Characteristics98.1Maximum ratings9
8General Product Characteristics
8.1 Maximum ratings9
8.1 Maximum ratings
8.2 Electrical characteristics
8.4Thermal ratings118.5EMC compliancy11
8.6 Functional state diagram
8.7 Functional device operation
8.8 Main state machine
8.9 Deep Fail-safe state
8.10 Fail-safe state machine
8.11 Power sequencing
8.12 Entering Debug mode using the VDDOTP
pin17
8.13 Flow charts
8.14 Application flow charts
8.15 Debug flow charts
8.16 Standby mode entry
8.17 Modes of operation 21
9 Best Of Supply
9.1 Functional description
9.2 Electrical characteristics
10 High Voltage Buck: VPRE
10.1 Functional description
10.2 Application schematic
10.3 Compensation network
10.4 Electrical characteristics
10.5 VPRE external MOSFETs27
10.6 VPRE efficiency
10.7 VPRE PFM mode current load capability29
10.8 VPRE not populated
11 Low Voltage Boost: VBOOST
11.1 Functional description
11.2 Application schematic
11.3 Compensation network and stability
11.4 Electrical characteristics
11.5 VBOOST not populated
12 Low Voltage Buck: BUCK1 and BUCK2
12.1 Functional description
12.2 Application schematic: single phase mode 33
12.3 Application schematic: dual-phase mode 34
12.4 Compensation network and stability
12.5 Electrical characteristics
12.6 BUCK1 and BUCK2 efficiency
13 Low Voltage Buck: BUCK3
13.1 Functional description
13.2 Application schematic
13.3 Compensation network and stability
VR5510 All information provided in this docu

13.4	Electrical characteristics	38
13.5	BUCK3 efficiency	
14	Linear Voltage Regulator: LDO1	40
14.1	Functional description	
14.2	Application schematics	
14.3	Electrical characteristics	
15	Linear Voltage Regulator: LDO2, LDO3	
15.1	Functional description	
15.2	Application schematics	
15.3	Electrical characteristics	
16	Linear Voltage Regulator: HVLDO	
16.1	Functional description	
16.2	Application schematics	
16.2	Electrical characteristics	
10.3 17		
	Thermal Management	
17.1	Functional description	
17.2	Electrical characteristics	
18	Clock Management	
18.1	Clock description	
18.2	Phase shifting	
18.3	Manual frequency tuning	
18.4	Spread spectrum	
18.5	External clock synchronization	
18.6	Low power oscillator	
18.7	Electrical characteristics	
19	Analog Multiplexer: AMUX	
19.1	Functional description	50
19.2	Block diagram	
19.3	AMUX channel selection	51
19.4	Electrical characteristics	52
20	I/O Interface Pins	
20.1	PWRON1, PWRON2	52
20.2	INTB	
20.3	PSYNC	55
20.4	STBY PGOOD	
20.5	STBY input	
20.6	PWRON2 for Deep Sleep mode	
21	Application Schematic	
22	Safety	
22.1	Functional description	59
22.2	QM versus ASIL-B versus ASIL-D	60
22.3	Fail-safe initialization	
22.4	Watchdog	
22.4.1	Simple watchdog	
22.4.2	Challenger watchdog	
22.4.3	Watchdog error counter	
22.4.4	Watchdog refresh counter	
22.4.4	Watchdog error impact	
22.4.5	MCU fault recovery strategy	
22.5	FCCU monitoring	
22.5.1	FCCU12 monitoring by pair	
22.5.2	FCCU12 independent monitoring	
22.5.3	FCCU1 WDI function for i.MX processor	
22.5.4	FCCU12 electrical characteristics	
22.6	Voltage supervisor	
22.6.1	VCOREMON voltage monitoring	69

© NXP B.V. 2021. All rights reserved.