

Features:

- 26.5 dBm Output Power at 12 GHz
- 11 dB Small Signal Gain at 12 GHz
- Excellent for Medium Linear Power Applications
- Ideal for Commercial, Military, Hi-Rel Space Applications
- 0.25 Micron Refractory Metal/Gold Gate
- 750 Micron Gate Width
- Choice of Chip and Three Package Types

Chip Dimensions: 485 x 315 microns Chip Thickness: 100 microns

Description:

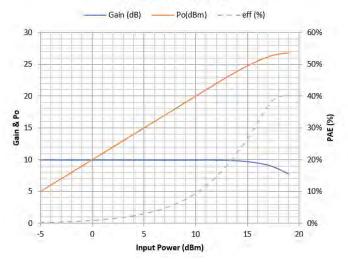
The MwT-9F is a GaAs MESFET device whose nominal 0.25 micron gate length and 750 micron gate width make it ideally suited to applications requiring medium linear power. It can be easily matched as the driver stage in high power communications amplifiers or in broad-band military amplifiers. All chips are passivated with SiN (Silicon Nitride).

RF Specifications: • at Ta= 25 °C

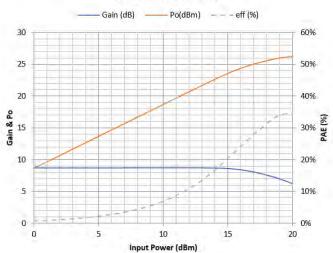
PARAMETERS & CONDITIONS	SYMBOL	FREQ	UNITS	TYP
Output Power at 1dB Compression Vds=7V lds=0.6xIDSS	P1dB	12 GHz	dBm	26.5
Output Third Order Intercept Point Vds=7V Ids=0.6xIDSS	OIP3	12 GHz	dBm	36
Small Signal Gain Vds=7V lds=0.6xIDSS	SSG	12 GHz	dB	11
Power Added Efficiency Vds=7V lds=0.6xIDSS	PAE	12 GHz	%	35

DC Specifications: • at Ta= 25 ℃

PARAMETERS & C	ONDITIONS	SYMBOL	UNITS	MIN	TYP	MAX
Saturated Drain Current Vds= 4.0 V Vgs= 0.0 V		IDSS	mA	200		250
Transconductance Vds= 2.0 V Vgs= 0.0 V		Gm	mS	130	140	
Pinch-off Voltage Vds= 3.0 V lds= 5.0 mA		Vp	V		-2.0	
Gate-to-Source Breakdown V Igs= -1.0 mA	/oltage	BVGSO	V	-14	-16	
Gate-to-Drain Breakdown Vol Igd= -1.0 mA	Itage	BVGDO	V	-14	-16	
Thermal Resistance	/wT-9F chip & 71 pkg 70 pkg & 73 pkg	RIN	C/W		60 165*	

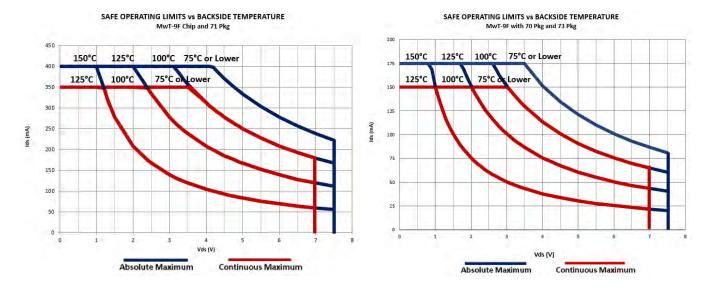

*Overall Rth depends on case mounting

MwT-9F 18 GHz Medium Power GaAs FET


MwT-9F, Typical Power at 12GHz

Vds=7V; Ids=0.6xIDSS

MwT-9F, Typical Power at 18GHz



MwT-9F MwT-9F **DUAL BIAS** OPTIONAL BONDING 50 Ω Output 50 Ω Output Output Reference Output Reference Microstrip Microstrip Plano Plano 18 Mils Long 18 Mils Long 2 Mils 2 Mile Copper Heat Sink 5 Mile Below Level of Microstorip Copper Heat Sink 5 Mits Below Level of Microstorip 20 Mile 20 Mils 7 Mils Long 7 Mils Long Gold Ridge Gold Ridge 10x10x5 For 10x10x5 Mils All Bond All Bond Dual Bias, or Input Reference Input Reference (2 each) Wires are 1.0 Wires are 1.0 50 Ω Output 50 Ω Output 25pF Caps for Plano Plano Mil Diameter Mil Diameter Microstrip Microstrip Single Bias (2 each)

MAXIMUM RATINGS AT Ta = 25 °C

Symbol	Parameter	Units	Cont Max1	Absolute Max2	
VDS	Drain to Source Volt.	V	See Safe Operating Limits		
Tch	Channel Temperature	°C	+150	+175	
Tst	Storage Temperature	°C	-65 to +150	+175	
Pin	RF Input Power	mW	300	450	

Notes:

- 1. Exceeding any one of these limits in continuous operation may reduce the mean-time- to-failure below the design goal.
- 2. Exceeding any one of these limits may cause permanent damage.