

Features:

- 30 dBm of Power at 12 GHz
- 13 dB Small Signal Gain at 12 GHz
- 44% PAE at 12 GHz
- 0.25 x 1200 Micron Refractory Metal/Gold Gate
- Excellent for Medium Power, Gain, and High Power Added Efficiency
- Ideal for Commercial, Military, Hi-Rel Space Applications

Chip Dimensions: 530 x 375 microns Chip Thickness: 100 microns

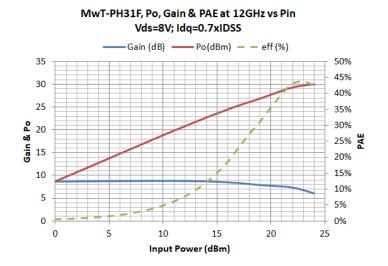
Description:

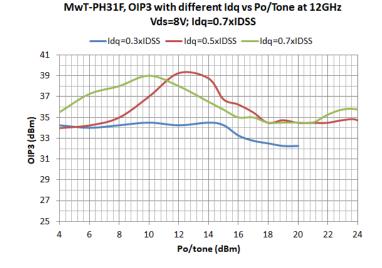
The MwT-PH31F is a AlGaAs/InGaAs pHEMT (Pseudomorphic-High-Electron-Mobility-Transistor) device whose nominal 0.25 micron gate length and 1200 micron gate width make it ideally suited for applications requiring high-gain and medium power up to 18 GHz frequency range. The device is equally effective for either wideband or narrow-band applications. The chip is produced using reliable metal systems and passivated to insure excellent reliability.

Electrical Specifications: at Ta= 25 °C

PARAMETERS & CONDITIONS	SYMBOL	FREQ	UNITS	MIN	TYP
PARAMETERS & CONDITIONS	STWDUL	FREQ	UNITS	IVIIIN	116
Output Power at 1dB Compression Vds=8.0V lds=0.7xlDSS	P1dB	12 GHz	dBm		28.5
Saturated Power Vds=8.0V lds=0.7xIDSS	Psat	12 GHz	dBm		30.0
Output Third Order Intercept Point Vds=8.0V Ids=0.7xIDSS	OIP3	12 GHz	dBm		37.0
Small Signal Gain Vds=8.0V lds=0.7xlDSS	SSG	12 GHz	dB		13.0
Power Added Efficiency at P1dB Vds=8.0V lds=0.7xlDSS	PAE	12 GHz	%		44

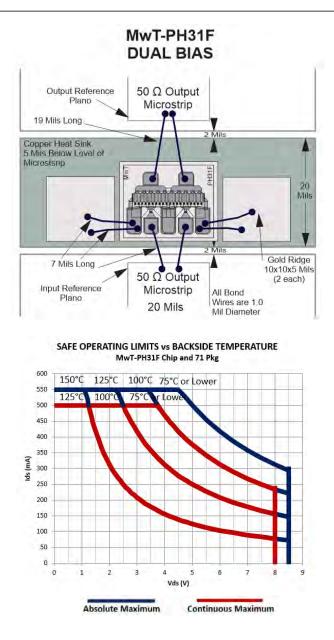
Note: Ids should be between 40% and 80% of Idss. Currently, our data shows Ids at 70% of IDSS. Low Ids will improve efficiency, but high Ids will make Psat and IP3 better.


DC Specifications: at Ta= 25 °C


PARAMETERS & CONDITIONS		SYMBOL	UNITS	MIN	TYP	MAX
Saturated Drain Current Vds= 2.0 V Vgs= 0.0 V		IDSS	mA	240		280
Transconductance Vds= 2.0 V Vgs= 0.0 V		Gm	mS		260	
Pinch-off Voltage Vds= 2.0 V lds= 1.0 mA		Vp	V		-0.8	-1.0
Gate-to-Source Breakdown Voltage lgs= -0.3 mA		BVGSO	V		-17.0	
Gate-to-Drain Breakdown Voltage lgd= -0.3 mA		BVGDO	V		-18.0	
Chip Thermal Resistance	Chip & 71 pkg	Rth	C/W		40	

* Overall Rth depends on case mounting

18 GHz Medium Power AlGaAs/InGaAs pHEMT



Freq	ZS		2	Psat	
GHz	Mag	phase	mag	phase	dBm
2	0.65	117.00	0.32	164.30	30.52
4	0.78	144.00	0.45	153.10	30.17
6	0.88	156.00	0.44	161.30	30.12
8	0.81	158.00	0.49	153.90	30.10
10	0.91	169.00	0.51	158.30	30.13
12	0.92	174.00	0.55	154.90	30.15

MwT-PH31F, Load Pull Power Data Vds=8V, Idq=0.7xIdss

The load pull data is based on nonlinear model provided by the foundry that processes the device.

Absolute Maximum Rating

Symbol	Parameter	Units	Cont Max1	Absolute Max2
VDS	Drain to Source Volt.	V	8.0	8.5
Tch	Channel Temperature	°C	+150	+175
Tst	Storage Temperature	°C	-65 to +150	+175
Pin	RF Input Power	mW	400	500

Notes:

1. Exceeding any one of these limits in continuous operation may reduce the mean-time- to-failure below the design goal.

2. Exceeding any one of these limits may cause permanent damage.