

12 GHz High Power AlGaAs/InGaAs pHEMT

Features:

- 30.5 dBm of Power at 12 GHz
- 13 dB Small Signal Gain at 12 GHz
- 43% PAE at 12 GHz
- 0.25 x 1600 Micron Refractory Metal/Gold Gate
- Excellent for High Power, Gain, and High Power Added Efficiency
- Ideal for Commercial, Military, Hi-Rel Space Applications

Chip Thickness: 100 microns

Description:

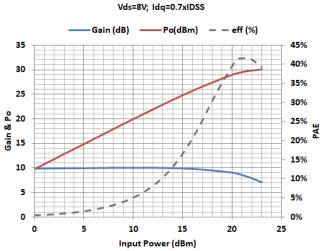
The MwT-PH32F is a AlGaAs/InGaAs pHEMT (Pseudomorphic-High-Electron-Mobility-Transistor) device whose nominal 0.25 micron gate length and 1600 micron gate width make it ideally suited for applications requiring high power and high power added efficiency up to 12.0 GHz frequency range. The device is equally effective for either wideband or narrow-band applications. The chip is produced using reliable metal systems and passivated to insure excellent reliability.

Electrical Specifications: at Ta= 25 °C

PARAMETERS & CONDITIONS	SYMBOL	FREQ	UNITS	MIN	TYP	
Output Power at 1dB Compression Vds=8.0V Ids=0.7xIDSS	P1dB	12 GHz	dBm		29.5	
Saturated Power Vds=8.0V lds=0.7xIDSS	Psat	12 GHz	dBm		30.5	
Output Third Order Intercept Point Vds=8.0V Ids=0.7xIDSS	OIP3	12 GHz	dBm		37.0	
Small Signal Gain Vds=8.0V lds=0.7xlDSS	SSG	12 GHz	dB		13.0	
Power Added Efficiency at P1dB Vds=8.0V Ids=0.7xIDSS	PAE	12 GHz	%		43	

Note: Ids should be between 40% and 80% of Idss. Currently, our data shows Ids at 70% of IDSS. Low Ids will improve efficiency, but high Ids will make Psat and IP3 better.

DC Specifications: at Ta= 25 °C


PARAMETERS & C	CONDITIONS	SYMBOL	UNITS	MIN	ТҮР	MAX
Saturated Drain Current Vds= 2.0 V Vgs= 0.0 V		IDSS	mA	310		360
Transconductance Vds= 2.0 V Vgs= 0.0 V		Gm	mS		500	
Pinch-off Voltage Vds= 2.0 V lds= 1.0 mA		Vp	V		-0.8	-1.0
Gate-to-Source Breakdown Voltage lgs= -0.3 mA		BVGSO	V		-16.0	
Gate-to-Drain Breakdown Voltage lgd= -0.3 mA		BVGDO	V		-18.0	
Chip Thermal Resistance	Chip & 71 pkg	Rth	C/W		35	

* Overall Rth depends on case mounting

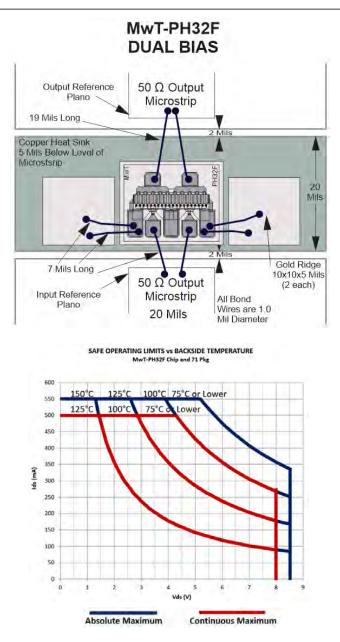
Updated February 2022

MwT-PH32F, Po, Gain & PAE vs Pin at 12GHz

Vds=8V; Idq=0.7xIDSS 41 39 37 (mgb) 833 33 31 35 29 27 25 10 15 20 25 5 Po/tone (dBm)

MwT-PH32F, OIP3 at different Idq vs Po/tone at 12GHz

Freq	Zs		Z	Psat		
GHz	Mag	phase	mag	phase	dBm	
2	0.75	130.00	0.43	169.60	31.68	
4	0.83	154.00	0.52	162.40	31.37	
6	0.92	162.00	0.53	164.60	31.33	
8	0.89	168.00	0.58	160.80	31.31	
10	0.94	175.00	0.57	164.60	31.35	
12	0.94	175.00	0.64	161.40	31.27	


MwT-PH32F, Load Pull Power Data, Vds=8V, Idq=0.7xIdss

The load pull data is based on nonlinear model provided by the foundry that processes the device.

Input Power (dBm

Absolute Maximum Rating

Symbol	Parameter	Units	Cont Max1	Absolute Max2
VDS	Drain to Source Volt.	v	8.0	8.5
Tch	Channel Temperature	°C	+150	+175
Tst	Storage Temperature	°C	-65 to +150	+175
Pin	RF Input Power	mW	500	600

Notes:

1. Exceeding any one of these limits in continuous operation may reduce the mean-time- to-failure below the design goal.

2. Exceeding any one of these limits may cause permanent damage.