

Features:

- 24.5 dBm of Power at 18 GHz
- 15 dB typical Small Signal Gain at 18 GHz
- 45% typical PAE at 18 GHz
- 0.25 x 250 Micron Refractory Metal/Gold Gate
- Excellent for High Gain, and High Power Added Efficiency
- Ideal for Commercial, Military, Hi-Rel Space Applications

Chip Dimensions: 365 x 260 microns Chip Thickness: 100 microns

Description:

The MwT-PH7F is a AlGaAs/InGaAs pHEMT (Pseudomorphic-High-Electron-Mobility-Transistor) device whose nominal 0.25 micron gate length and 250 micron gate width make it ideally suited for applications requiring high-gain and medium power up to 28 GHz frequency range. The device is equally effective for either wideband (e.g. 6 to 18 GHz) or narrow-band applications. The chip is produced using reliable metal systems and passivated to insure excellent reliability.

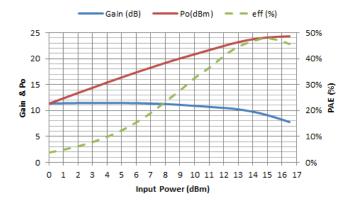
Electrical Specifications: at Ta= 25 °C

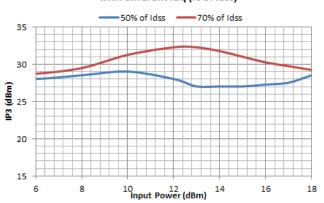
PARAMETERS & CONDITIONS	SYMBOL	FREQ	UNITS	MIN	TYP
Output Power at 1dB Compression Vds=8.0V lds=0.7xlDSS	P1dB	18 GHz	dBm		23.0
Saturated Power Vds=8.0V lds=0.7xIDSS	Psat	18 GHz	dBm		24.5
Output Third Order Intercept Point Vds=8.0V lds=0.7xIDSS	OIP3	18 GHz	dBm		30.0
Small Signal Gain Vds=8.0V lds=0.7xlDSS	SSG	18 GHz	dB		15.0
Power Added Efficiency at P1dB Vds=8.0V lds=0.7xlDSS	PAE	18 GHz	%		45

Note: Ids should be between 40% and 80% of Idss. Currently, our data shows Ids at 70% of IDSS. Low Ids will improve efficiency, but high Ids will make Psat and IP3 better.

DC Specifications: at Ta= 25 °C

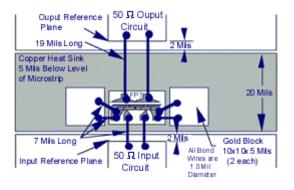
PARAMETERS & CONDITIONS	SYMBOL	UNITS	MIN	TYP	MAX
Saturated Drain Current Vds= 3.0 V Vgs= 0.0 V	IDSS	mA	60		80
Transconductance Vds= 2.5 V Vgs= 0.0 V	Gm	mS		90	
Pinch-off Voltage Vds= 3.0 V lds= 1.0 mA	Vp	V		-0.8	-1.0
Gate-to-Source Breakdown Voltage lgs= -0.3 mA	BVGSO	V		-17.0	
Gate-to-Drain Breakdown Voltage lgd= -0.3 mA	BVGDO	V		-18.0	
Chip Thermal Resistance	Rth	C/W		150 350*	


^{*} Overall Rth depends on case mounting

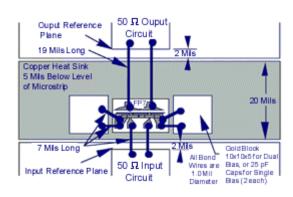


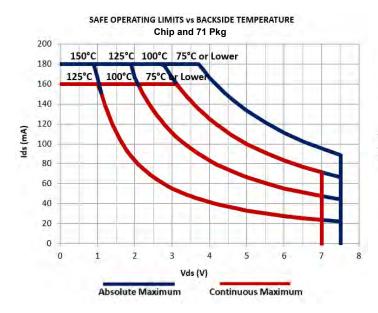
MwT-PH7F from GCS, Typical Power at 18GHz Vds=8V; Idq=0.7xIDSS

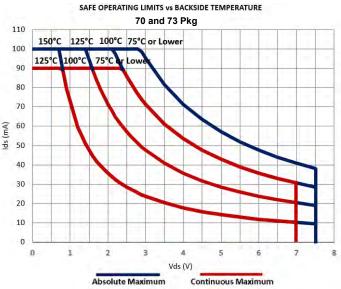
MwT-PH7F, OIP3 vs Po/tone with different Idq (% of Idss)


MwT-PH7F, Load Pull Data, Vdq=8V; Idq=0.7xIdss

	Zs		7	<u>'</u> L	Psat
Freq (GHz)	Mag	phase	mag	phase	dBm
2	0.90	34.0	0.37	9.4	23.8
4	0.85	64.0	0.42	23.4	23.4
6	0.79	84.0	0.40	26.3	23.7
8	0.82	105.0	0.43	33.8	23.4
10	0.85	115.0	0.45	38.6	23.2
12	0.87	125.0	0.42	42.2	23.6
14	0.87	133.0	0.47	50.8	23.5
16	0.86	144.0	0.47	53.9	23.3
18	0.85	145.0	0.47	60.0	23.2


The load pull data is based on nonlinear model provided by the foundry that processes the device.




MwT-PH7F DUAL BIAS

MwT-PH7F SELF BIAS

Absolute Maximum Rating

Symbol	Parameter	Units	Cont Max1	Absolute Max2
VDS	Drain to Source Volt.	V	6.5	7.5
Tch	Channel Temperature	°C	+150	+175
Tst	Storage Temperature	°C	-65 to +150	+175
Pin	RF Input Power	mW	80	120

Notes

- 1. Exceeding any one of these limits in continuous operation may reduce the mean-time- to-failure below the design goal.
- 2. Exceeding any one of these limits may cause permanent damage.