

Features:

- 30 dBm of Power at 12 GHz
- 11 dB Small Signal Gain at 12 GHz
- 42% PAE at 12 GHz
- 0.25 x 1200 Micron Refractory Metal/Gold Gate
- Excellent for Power, Gain, and High Power Added Efficiency
- Ideal for Commercial, Military, Hi-Rel Space Applications

Chip Dimensions: 670 x 315 microns
Chip Thickness: 100 microns

Description:

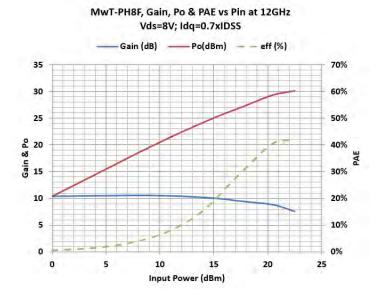
The MwT-PH8F is a AlGaAs/InGaAs pHEMT (Pseudomorphic-High-Electron-Mobility-Transistor) device whose nominal 0.25 micron gate length and 1200 micron gate width make it ideally suited for applications requiring high-gain and medium power up to 18 GHz frequency range. The device is equally effective for either wideband or narrow-band applications. The chip is produced using reliable metal systems and passivated to insure excellent reliability.

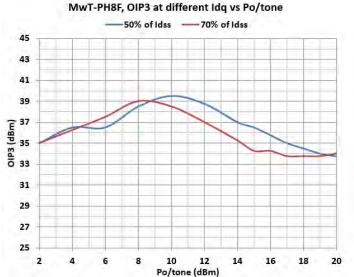
Electrical Specifications: at Ta= 25 °C

PARAMETERS & CONDITIONS	SYMBOL	FREQ	UNITS	MIN	TYP	
Output Power at 1dB Compression Vds=8.0V lds=0.7xlDSS	P1dB	12 GHz	dBm		27.5	
Saturated Power Vds=8.0V lds=0.7xlDSS	Psat	12 GHz	dBm		30.0	
Output Third Order Intercept Point Vds=8.0V lds=0.7xlDSS	OIP3	12 GHz	dBm		35.0	
Small Signal Gain Vds=8.0V lds=0.7xlDSS	SSG	12 GHz	dB		11.0	
Power Added Efficiency at P1dB Vds=8.0V lds=0.7xlDSS	PAE	12 GHz	%		42	

Note: Ids should be between 40% and 80% of Idss. Currently, our data shows Ids at 70% of IDSS. Low Ids will improve efficiency, but high Ids will make Psat and IP3 better.

DC Specifications: at Ta= 25 °C

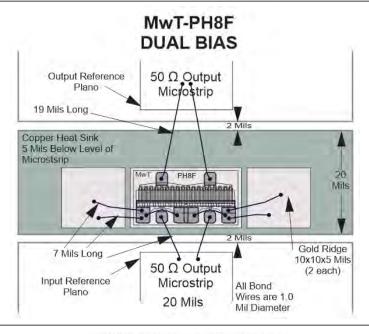

PARAMETERS & CONDITIONS	SYMBOL	UNITS	MIN	TYP	MAX
Saturated Drain Current Vds= 3.0 V Vgs= 0.0 V	IDSS	mA	250		300
Transconductance Vds= 2.5 V Vgs= 0.0 V	Gm	mS		400	
Pinch-off Voltage Vds= 3.0 V lds= 1.0 mA	Vp	V		-0.8	-1.0
Gate-to-Source Breakdown Voltage lgs= -0.3 mA	BVGSO	V		-17.0	
Gate-to-Drain Breakdown Voltage Igd= -0.3 mA	BVGDO	V		-18.0	
Chip Thermal Resistance Chip & 71	pkg Rth	C/W		40	


^{*} Overall Rth depends on case mounting

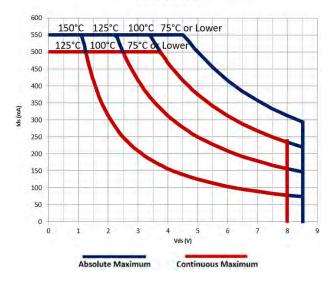
MwT-PH8F

18 GHz Medium Power AlGaAs/InGaAs pHEMT

MwT-PH8F, Load Pull Power Data, Vds=8V; Idq=0.7xIdss


	Zs		Z L		P _{sat}
Freq (GHz)	mag	phase	mag	phase	dBm
2	0.70	130.0	0.32	175.3	31.0
4	0.90	155.0	0.40	163.5	30.5
6	0.95	170.0	0.36	168.0	30.9
8	0.85	173.0	0.42	163.3	30.7
10	0.90	180.0	0.51	159.7	30.6
12	0.90	179.4	0.56	158.5	30.4

The load pull data is based on nonlinear model provided by the foundry that processes the device.



SAFE OPERATING LIMITS vs BACKSIDE TEMPERATURE MwT-PH8F Chip and 71 Pkg

Absolute Maximum Rating

Symbol	Parameter	Units	Cont Max1	Absolute Max2
VDS	Drain to Source Volt.	V	8.0	8.5
Tch	Channel Temperature	°C	+150	+175
Tst	Storage Temperature	°C	-65 to +150	+175
Pin	RF Input Power	mW	240	360

Notes

- 1. Exceeding any one of these limits in continuous operation may reduce the mean-time- to-failure below the design goal.
- 2. Exceeding any one of these limits may cause permanent damage.