

Data Sheet Issue:- P1

Phase Control Thyristor Types N5415EA320 & N5415EA360

Absolute Maximum Ratings

	VOLTAGE RATINGS	MAXIMUM LIMITS	UNITS
V _{DRM}	Repetitive peak off-state voltage, (note 1)	3200-3600	V
V _{DSM}	Non-repetitive peak off-state voltage, (note 1)	3300-3700	V
V _{RRM}	Repetitive peak reverse voltage, (note 1)	3200-3600	V
V _{RSM}	Non-repetitive peak reverse voltage, (note 1)	3300-3700	V

	OTHER RATINGS	MAXIMUM LIMITS	UNITS
I _{T(AV)}	Mean on-state current. T _{sink} =55°C, (note 2)	5415	А
I _{T(AV)}	Mean on-state current. T _{sink} =85°C, (note 2)	3820	А
I _{T(AV)}	Mean on-state current. T _{sink} =85°C, (note 3)	2125	А
I _{T(RMS)}	Nominal RMS on-state current. T _{sink} =25°C, (note 2)	10530	А
I _{T(d.c.)}	D.C. on-state current. T _{sink} =25°C, (note 4)	9515	А
I _{TSM}	Peak non-repetitive surge t _p =10ms, V _{RM} =0.6V _{RRM} , (note 5)	65	kA
I _{TSM2}	Peak non-repetitive surge t _p =10ms, V _{RM} ≤10V, (note 5)	72	kA
l²t	$I^{2}t$ capacity for fusing t _p =10ms, V _{RM} =0.6V _{RRM} , (note 5)	21.1×10 ⁶	A ² s
l²t	$I^{2}t$ capacity for fusing t _p =10ms, V _{RM} ≤10V, (note 5)	25.9×10 ⁶	A ² s
-1: /-14	Maximum rate of rise of on-state current (repetitive), (Note 6)	150	A/µs
di⊤/dt	Maximum rate of rise of on-state current (non-repetitive), (Note 6)	300	A/µs
V _{RGM}	Peak reverse gate voltage	5	V
P _{G(AV)}	Mean forward gate power	5	W
P _{GM}	Peak forward gate power	30	W
V _{GD}	Non-trigger gate voltage, (Note 7)	0.25	V
T _{HS}	Operating temperature range	-40 to +125	°C
T _{stg}	Storage temperature range	-40 to +150	°C

Notes: -

- 1) De-rating factor of 0.13% per °C is applicable for T_j below 25°C.
- 2) Double side cooled, single phase; 50Hz, 180° half-sinewave.
- 3) Cathode side cooled, single phase; 50Hz, 180° half-sinewave.
- 4) Double side cooled.
- 5) Half-sinewave, 125°C T_j initial.
- 6) V_D=67% V_DRM, I_TM=5000A, I_{FG}=2A, t_r \!\!\leq\!\! 0.5 \mu s, T_{case} \!\!=\!\! 125^\circ C.
- 7) Rated V_{DRM}.

Characteristics

	PARAMETER	MIN.	TYP.	MAX.	TEST CONDITIONS (Note 1)	UNITS
V _{TM}	Maximum peak on-state voltage	-	-	1.55	I _{TM} =5000A	V
V _{T0}	Threshold voltage	-	-	0.913		V
r _T	Slope resistance	-	-	0.125		mΩ
dv/dt	Critical rate of rise of off-state voltage	1000	-	-	V_D =80% V_{DRM} , Linear ramp, gate o/c	V/μs
I _{DRM}	Peak off-state current	-	-	200	Rated V _{DRM}	mA
I _{RRM}	Peak reverse current	-	-	200	Rated V _{RRM}	mA
V _{GT}	Gate trigger voltage	-	-	3.0		V
I _{GT}	Gate trigger current	-	-	300	$T_j=25^{\circ}C, V_D=10V, I_T=3A$	mA
I _H	Holding current	-	-	1000	T _j =25°C	mA
t _{gd}	Gate controlled turn-on delay time	-	0.9	1.3	I _{FG} =2A, t _r =0.5µs, V _D =67%V _{DBM} ,	
t _{gt}	Turn-on time	-	2.4	4.0	I _{TM} =2000A, di/dt=10A/μs, T _j =25°C	μs
Q _{rr}	Recovered Charge	-	11500	13000		μC
Q _{ra}	Recovered Charge, 50% chord	-	7150	-	I _{TM} =2000A, t _p =2000µs, di/dt=10A/µs,	μC
Irm	Reverse recovery current	-	275	-	V _r =100V	Α
t _{rr}	Reverse recovery time, 50% chord	-	52	-		μs
+	Turn-off time	-	625	-	I _{TM} =2000A, t _p =2000µs, di/dt=10A/µs, V _r =100V, V _{dr} =80%V _{DRM} , dV _{dr} /dt=20V/µs	
t _q		-	1000	-	I _{TM} =2000A, t _p =2000µs, di/dt=10A/µs, V _r =100V, V _{dr} =80%V _{DRM} , dV _{dr} /dt=200V/µs	μs
		-	-	0.005	Double side cooled	K/W
$R_{_{thJK}}$	Thermal resistance, junction to heatsink	-	-	0.012	Cathode side cooled	K/W
	neatonik	-	-	0.009	Anode side cooled	K/W
F	Mounting force	76	-	93		kN
Wt	Weight	-	1.55	-		kg

Notes on Ratings and Characteristics

1.0 Voltage Grade Table

Voltage Grade	Vdrm Vdsm Vrrm V	V _{RSM} V	V _D V _R DC V
32	3200	3300	1920
36	3600	3700	2160

2.0 Extension of Voltage Grades

This report is applicable to other and higher voltage grades when supply has been agreed by Sales/Production.

3.0 De-rating Factor

A blocking voltage de-rating factor of 0.13%/°C is applicable to this device for T_j below 25°C.

4.0 Repetitive dv/dt

Standard dv/dt is 1000V/µs.

5.0 Computer Modelling Parameters

5.1 Device Dissipation Calculations

$$I_{AV} = \frac{-V_0 + \sqrt{V_0 + 4 \cdot ff^2 \cdot r_s \cdot W_{AV}}}{2 \cdot ff^2 \cdot r_s} \quad \text{and:} \quad \begin{aligned} W_{AV} = \frac{\Delta T}{R_{th}} \\ \Delta T = T_{j \max} - T_{Hs} \end{aligned}$$

Where $V_0=0.913V$, $r_T=0.125m\Omega$,

 R_{th} = Supplementary thermal impedance, see table below.

ff = Form factor, see table below.

Supplementary Thermal Impedance							
Conduction Angle	30°	60°	90°	120°	180°	270°	d.c.
Square wave Double Side Cooled	0.00556	0.00549	0.00543	0.00538	0.00527	0.00514	0.00500
Square wave Cathode Side Cooled	0.01292	0.01285	0.01278	0.01271	0.01259	0.01244	0.01200
Sine wave Double Side Cooled	0.00551	0.00543	0.00537	0.00531	0.00515		
Sine wave Cathode Side Cooled	0.01286	0.01277	0.01270	0.01263	0.01245		

Form Factors							
Conduction Angle	30°	60°	90°	120°	180°	270°	d.c.
Square wave	3.46	2.45	2	1.73	1.41	1.15	1
Sine wave	3.98	2.78	2.22	1.88	1.57		

5.2 Calculating V_T using ABCD Coefficients

The on-state characteristic I_T vs. V_T , on page 5 is represented in two ways;

- (i) the well established V_o and r_s tangent used for rating purposes and
- (ii) a set of constants A, B, C, D, forming the coefficients of the representative equation for V_T in terms of I_T given below:

$$V_T = A + B \cdot \ln(I_T) + C \cdot I_T + D \cdot \sqrt{I_T}$$

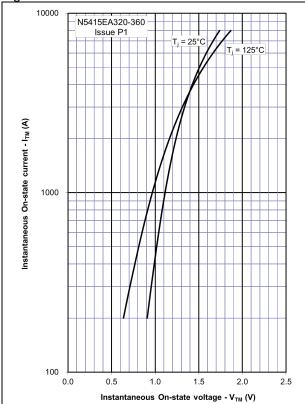
The constants, derived by curve fitting software, are given below for both hot and cold characteristics. The resulting values for V_T agree with the true device characteristic over a current range, which is limited to that plotted.

25°C Coefficients		125°C Coefficients	
Α	0.34074	Α	-0.2242077
В	0.1082168	В	0.1561106
С	6.87888×10⁻⁵	С	7.15707×10⁻⁵
D	-1.400634×10 ⁻³	D	1.290939×10 ⁻³

5.3 D.C. Thermal Impedance Calculation

$$r_t = \sum_{p=1}^{p=n} r_p \cdot \left(1 - e^{\frac{-t}{\tau_p}}\right)$$

Where p = 1 to *n*, *n* is the number of terms in the series and:


- t = Duration of heating pulse in seconds.
- r_{t} = Thermal resistance at time t.
- r_p = Amplitude of p_{th} term.
- τ_p = Time Constant of r_{th} term.

	D.C. Double Side Cooled					
Term	1	2	3			
rp	2.761048×10 ⁻³	1.738044×10 ⁻³	5.209655×10 ⁻⁴			
τρ	0.8332002	0.1416775	0.01436119			

D.C. Cathode Side Cooled					
Term	1	2	3		
r _p	9.855141 ×10 ⁻³	1.983482×10 ⁻³	4.775474×10 ⁻⁴		
τρ	4.147275	0.1396446	0.0116827		

<u>Curves</u>

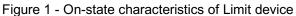
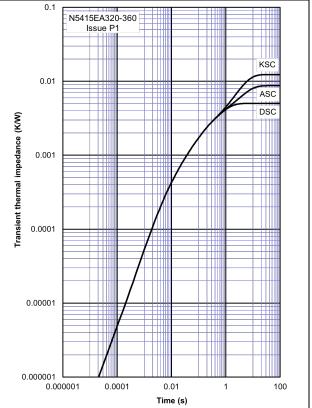
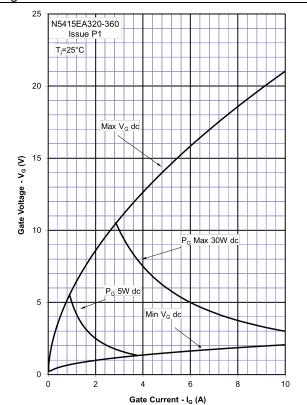
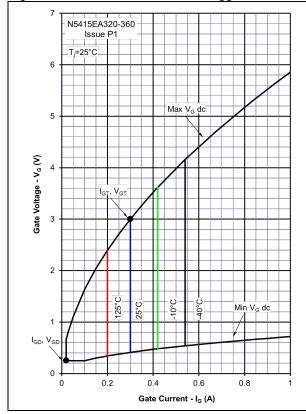
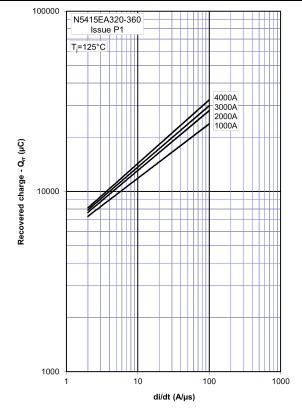
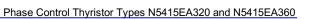
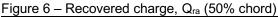



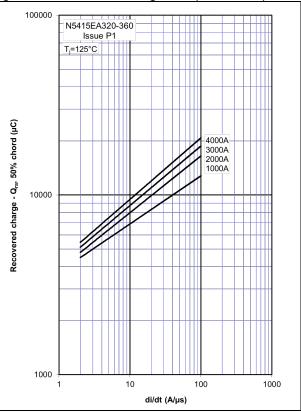
Figure 2 - Transient Thermal Impedance

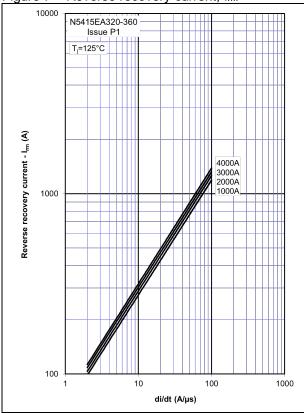
its Figure 4 - Gate Characteristics - Power Curves

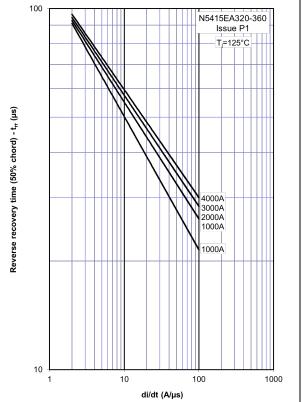





Figure 3 - Gate Characteristics - Trigger Limits






Figure 5 – Recovered Charge, Qrr



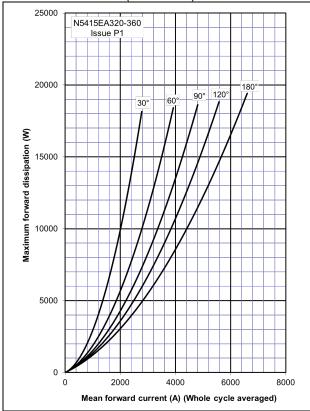


Figure 9 - On-state current vs. Power dissipation -Double Side Cooled (Sine wave)

Figure 10 – On-state current vs. Heatsink temperature - Double Side Cooled (Sine wave)

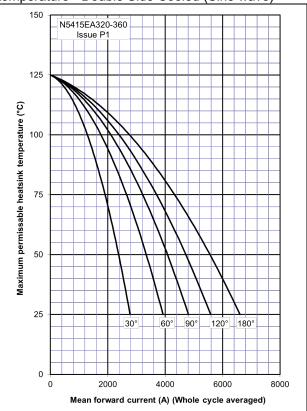
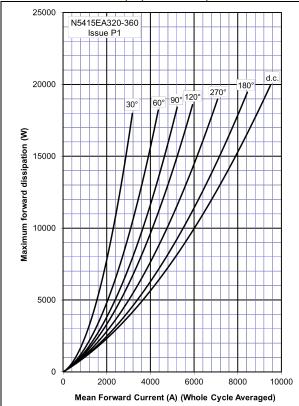




Figure 11 – On-state current vs. Power dissipation – Figure 12 – On-state current vs. Heatsink Double Side Cooled (Square wave)

temperature - Double Side Cooled (Square wave)

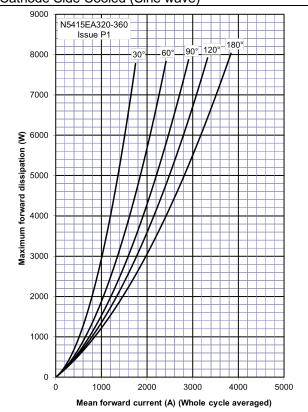
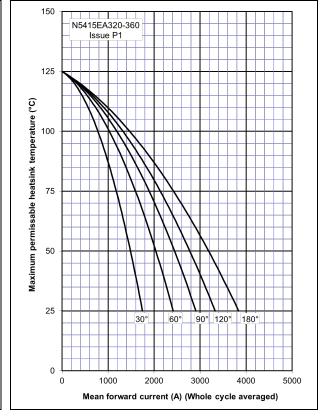
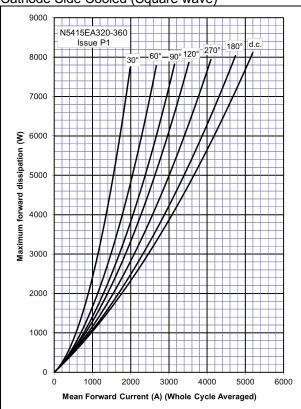
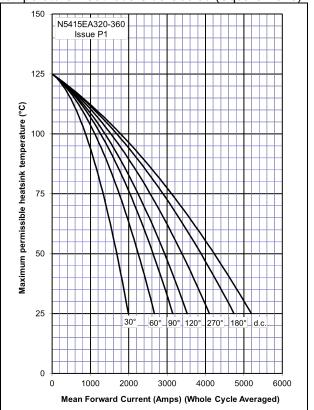
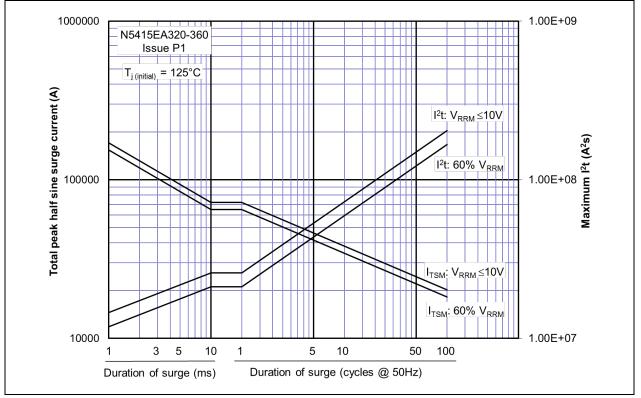


Figure 13 – On-state current vs. Power dissipation – Figure 14 – On-state current vs. Heatsink Cathode Side Cooled (Sine wave)

temperature - Cathode Side Cooled (Sine wave)


Figure 15 – On-state current vs. Power dissipation – Figure 16 – On-state current vs. Heatsink Cathode Side Cooled (Square wave)

temperature - Cathode Side Cooled (Square wave)

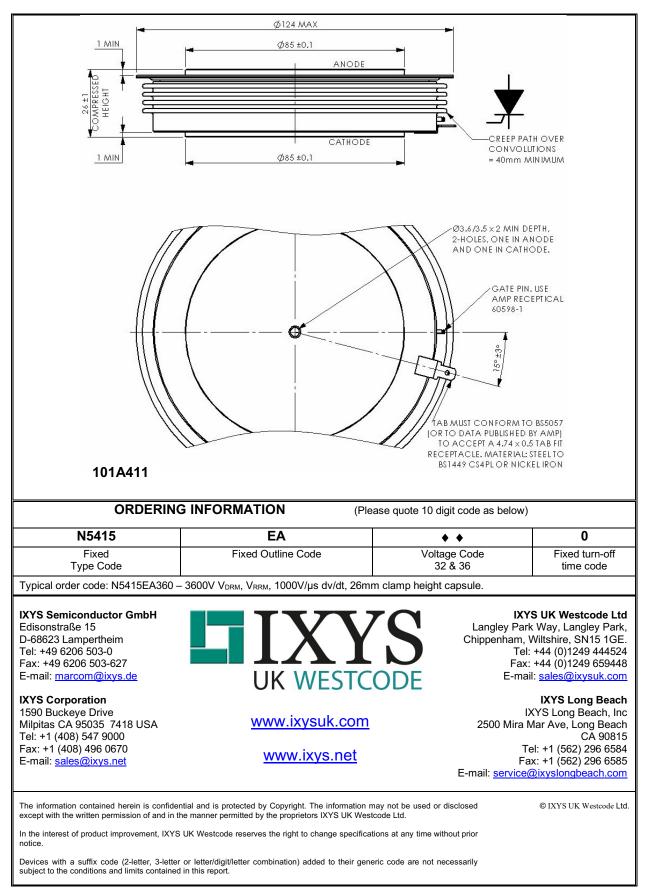


Figure 17 – Maximum surge and I²t Ratings

Outline Drawing & Ordering Information

