3.3 V 200 MHz 1:2 LVCMOS/LVTTL Low Skew Fanout Buffer

Description

The NB3M8302C is 1:2 fanout buffer with LVCMOS/LVTTL input and output. The device supports the core supply voltage of 3.3 V (V_{DD} pin) and output supply voltage of 2.5 V or 3.3 V (V_{DDO} pin). The V_{DDO} pin powers the two single ended LVCMOS/LVTTL outputs.

The NB3M8302C is Form, Fit and Function (pin to pin) compatible to ICS8302 and ICS8302I. The NB3M8302C is qualified for industrial operating temperature range.

Features

- Input Clock Frequency up to 200 MHz
- Low Output to Output Skew: 25 ps typical
- Low Part to Part Skew: 250 ps typical
- Low Additive RMS Phase Jitter
- Input Clock Accepts LVCMOS/ LVTTL Levels
- Operating Voltage:
 - Core Supply: $V_{DD} = 3.3 \text{ V} \pm 5\%$
 - Output Supply: $V_{DDO} = 3.3 \text{ V} \pm 5\%$ or 2.5 V $\pm 5\%$
- Operating Temperature Range:
- Industrial: -40° C to $+85^{\circ}$ C
- These Devices are Pb-Free and are RoHS Compliant

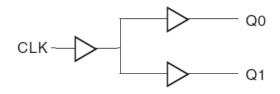
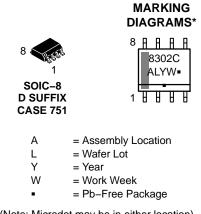



Figure 1. Block Diagram

ON Semiconductor®

www.onsemi.com

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

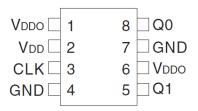


Figure 2. Pin Configuration (Top View)

Table 1. PIN DESCRIPTION

Pin Number	Name	Туре	Description
1, 6	VDDO	Output Power	Clock output Supply pin.
2	VDD	Input and Core Power	Input and Core Supply pin.
3	CLK	LVCMOS/LVTTL Input	Clock Input. Internally pull-down.
4, 7	GND	Ground	Supply Ground.
5	Q1	LVCMOS/LVTTL Output	LVCMOS/LVTTL Clock output.
8	Q0	LVCMOS/LVTTL Output	LVCMOS/LVTTL Clock output.

Table 2. MAXIMUM RATINGS

Symbol	Parameter	Condition	Min	Max	Unit
V _{DD} , V _{DDO}	Power Supply		-	4.6	V
VI	Input Voltage		-0.5	VDD + 0.5 V	V
T _{stg}	Storage Temperature		-65	+150	°C
θ_{JA}	Thermal Resistance (Junction to Ambient) SOIC-8	0 lfpm 500 lfpm		80 55	°C/W
θ _{JC}	Thermal Resistance (Junction to Case) (Note 1)			12–17	°C/W
T _{sol}	Wave Solder	3 sec		265	°C
MSL	Moisture Sensitivity SOIC-8	Indefinite Time Out of Drypack (Note 2)	Level 1		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

JEDEC standard multilayer board – 2S2P (2 signal, 2 power)
For additional information, see Application Note AND8003/D.

Table 3. DC OPERATING CHARACTERISTICS

 $(V_{DD} = V_{DDO} = 3.3 \text{ V}\pm5\%, V_{DD} = 3.3 \text{ V}\pm5\%, V_{DDO} = 2.5 \text{ V}\pm5\%; T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Symbol	Parameter	Condition	Min	Тур	Max	Unit
R _{IN}	Input Pull-down Resistor (CLK Pin)			51		kΩ
C _{IN}	Input Capacitance			4		pF
R _{OUT}	Output Impedance (Note 3)		5	7	12	Ω
C _{PD}	Power Dissipation Capacitance (per output)	V _{DD} = V _{DDO} = 3.465 V		22		pF
		V_{DD} = 3.465 V, V_{DDO} = 2.625 V		16		
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
I _{IH}	Input High Current	V _{IN} = V _{DD} = 3.465 V			150	μΑ
IIL	Input Low Current	V _{DD} 3.465 V, V _{IN} = 0.0 V	-0.5			μΑ

3. Outputs terminated with 50 Ω to V_{DDO}/2. See Figure 4 for supply considerations. Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 4. DC OPERATING CHARACTERISTICS (T_A = -40° C to $+85^{\circ}$ C)

Symbol	Parameter	Condition	Min	Max	Unit
/ _{DD} = 3.3 V	/±5%, V _{DDO} = 2.5 V±5%		-		
V _{DDO}	Output Supply Voltage		2.375	2.625	V
V _{OH}	Output HIGH Voltage	I _{OH} = –16 mA	2.1		V
		I _{OH} = -100 μA	2.2		
		50 Ω to V_DDO/2	1.8		
V _{OL}	Output LOW Voltage	I _{OL} = 16 mA		0.15	V
		I _{OL} = 100 μA		0.2	
		50 Ω to V _{DDO} /2		0.5	1

V_{DD} = V_{DDO} = 3.3 V±5%

V _{DDO}	Output Supply Voltage		3.135	3.465	V
V _{OH}	Output HIGH Voltage	I _{OH} = -16 mA	2.9		V
		I _{OH} = −100 μA	2.9		
		50 Ω to V_{DDO}/2	2.6		
V _{OL}	Output LOW Voltage	I _{OL} = 16 mA		0.15	V
		I _{OL} = 100 μA		0.2	
		50 Ω to V _{DDO} /2		0.5	

Table 5. DC OPERATING CHARACTERISTICS	$(T_A = -40^{\circ}C \text{ to } +85^{\circ}C; V_{DD} = V_{DDO})$	= 3.3 V \pm 5%, V _{DD} = 3.3 V \pm 5%, V _D	_{DO} = 2.5
V±5%)			

Symbol	Parameter	Condition	Min	Max	Unit
I _{DD}	Quiescent Power Supply Current	No Load		13	mA
I _{DDO}	Quiescent Power Supply Current	No Load		4	mA
V _{IH}	Input HIGH Voltage		2	V _{DD} + 0.3	V
V _{IL}	Input LOW Voltage		-0.3	1.3	V

Table 6. AC CHARACTERISTICS (Note 4)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
$T_A = -40^{\circ}C$ to +85°C; $V_{DD} = V_{DDO} = 3.3 V \pm 5\%$						
F _{IN}	Input Frequency				200	MHz
t _{PLH}	Propagation Delay (Note 5)	Fin = 200 MHz	1.9		3.1	ns
t _{SKEW}	Output to Output Skew(Note 6)			25	85	ps
	Part to Part Skew (Note 6)			250	800	
t SKEWDC	Output Duty Cycle (see Figure 3)	$Fin \leq 133 \text{ MHz}$	45		55	%
		133 MHz < Fin < 200 MHz	40		60	
tr/tf	Output rise and fall times (Note 7)	20% to 80%, RS = 33 Ω	250		800	ps

$T_A = -40^{\circ}C$ to +85°C; $V_{DD} = 3.3 V \pm 5\%$, $V_{DDO} = 2.5 V \pm 5\%$

F _{IN}	Input Frequency				200	MHz
t _{PLH}	Propagation Delay (Note 5)	Fin = 200 MHz	2.0		3.3	ns
t _{SKEW}	Output to Output Skew(Note 6)			25	85	ps
	Part to Part Skew (Note 6)			250	800	
t _{SKEWDC}	Output Duty Cycle (see Figure 3)	$Fin \leq 133 MHz$	45		55	%
		133 MHz < Fin < 200 MHz	40		60	
tr/tf	Output rise and fall times (Note 7)	20% to 80%, RS = 33 Ω	200		650	ps

4. Clock input with 50% duty cycle. Outputs terminated with 50 Ω to V_{DDO}/2. See Figures 3 and 4.

5. Measured from $V_{DD}/2$ of the input to $V_{DDO}/2$ of the output. 6. Similar input conditions and the same supply voltages. Measured at $V_{DDO}/2$. See Figures 3 and 4.

7. RS is Series Resistance at the clock outputs.

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

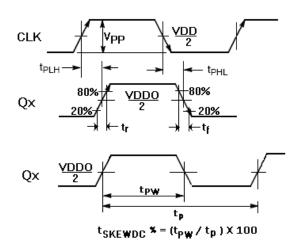
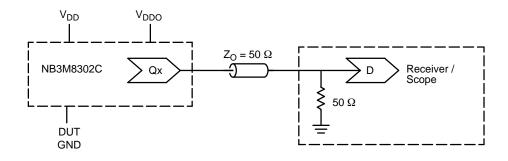
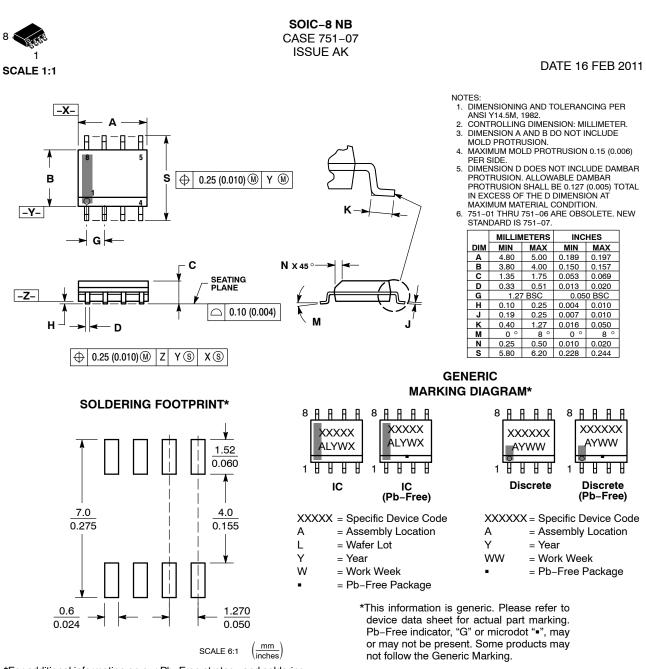



Figure 3. AC Reference Measurement

Spec Condition:	TEST SETUP V _{DD} :	TEST SETUP V _{DDO} :	TEST SETUP DUT GND:
$V_{DD} = V_{DDO} = 3.3 \text{ V} \pm 5\%$	1.65 V ±5%	1.65 V ±5%	–1.65 V ±5%
V_{DD} = 3.3 V ±5%; V_{DDO} = 2.5 V ±5%	2.05 V ±5%	1.25 V ±5%	-1.25 V ±5%


Figure 4. Output Driver Typical Device Evaluation and Termination Setup

ORDERING INFORMATION

Device	Package	Shipping [†]
NB3M8302CDG	SOIC–8 (Pb–Free)	98 Units / Rail
NB3M8302CDR2G	SOIC–8 (Pb–Free)	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	DESCRIPTION: SOIC-8 NB PA						
ON Semiconductor reserves the right the suitability of its products for any pa	ON Semiconductor and a re trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights or others.						

© Semiconductor Components Industries, LLC, 2019

SOIC-8 NB CASE 751-07 **ISSUE AK**

STYLE 1: PIN 1. EMITTER COLLECTOR 2. COLLECTOR З. 4. EMITTER EMITTER 5. BASE 6. 7 BASE 8. EMITTER STYLE 5: PIN 1. DRAIN 2. DRAIN З. DRAIN DRAIN 4. 5. GATE 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6. BASE, DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. 4. TXE 5. RXE 6. VFF GND 7. 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 З. CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C З. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. EMITTER, #1 BASE, #2 2. З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 З. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: PIN 1. GROUND BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND BIAS 2 INPUT 6. 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE P-SOURCE 3 P-GATE 4. 5. P-DRAIN 6. P-DRAIN N-DRAIN 7. 8. N-DRAIN STYLE 18: PIN 1. ANODE 2. ANODE SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. 8. CATHODE STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3 COMMON CATHODE/VCC I/O LINE 3 4. 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 26: PIN 1. GND 2 dv/dt ENABLE З. 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: PIN 1. DRAIN 1 DRAIN 1 2 GATE 2 З. SOURCE 2 4. SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1
STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd
STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 7. DRAIN 1 8. DRAIN 1
STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON
STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1
STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT
STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN

DATE 16 FEB 2011

STYLE 4: ANODE ANODE PIN 1. 2. ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE, #2 З. COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE SOURCE 2. 3. 4. GATE 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE 2. EMITTER З. COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE CATHODE COLLECTOR/ANODE 6. 7. COLLECTOR/ANODE 8. STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET 3. 4. GND 5. 6. V MON VBULK 7. VBULK 8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2	
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patter trights nor the				

SOURCE 1/DRAIN 2

7.

8. GATE 1

7.

8

rights of others.

COLLECTOR, #1

COLLECTOR, #1